

© 2025 JM Creative
JMLLC-SMTBK-20250212
February 2025

The UNIX Programming Environment, 1984

 At its heart is the idea that the power of a system
comes more from the relationships among programs
than from the programs themselves.”

…“

Diagrams were made in Sketch. Page layouts were designed in Sketch and ported to Affinity Publisher for press and qpdf for web.

This book is made available strictly for informational purposes. Its contents are provided on an as-is basis without guarantee or warranty.
The Smarthome project is not offered for sale, trade, or distribution. This project is not paid for, sponsored, or endorsed by any company.
All trademarks mentioned in this book are property of their respectful owners. This book was made without generative AI.

Some art (page 12) is derived from designers from The Noun Project: Puzzle piece icon derived from “add on” icon by Stephan Bgnr; globe icon
derived from “Globe” by Adinda Diah Pramesti. Home Assistant automation icon (robot head, page 21) is derived from the icon part of Lovelace UI.

Alexa is a trademark of Amazon.com, Inc. Apple, AirPlay, the Home Screen button, iPhone, the iPhone outline design, iTunes Store, Mac, MacBook, MacBook Pro,
Night Shift, Retina, Safari, Siri, Spotlight, and True Tone, including wordmarks, designs, and logos, are trademarks of Apple Inc., registered in the U.S. and other
countries and regions. Multi-Touch is a trademark of Apple Inc. (“Apple strongly cautions against installing any software that modifies iOS.”) AVA OS is a trademark
of AVA AG. Bluetooth, including wordmark and logos, are registered trademarks owned by Bluetooth SIG, Inc. Brilliant is a registered trademark of Brilliant Home
Technology, Inc. IOS is a trademark or registered trademark of Cisco in the U.S. and other countries. Matter and Zigbee are registered trademarks of the Connectivity
Standards Alliance. Android and Google Assistant are trademarks of Google LLC. Philips is a registered trademark of Koninklijke Philips N.V. Harmony is a registered
trademark of Logitech International S.A. Helvetica is a registered trademark of Monotype. UNIX is a registered trademark of The Open Group. Home Assistant is a
connected home project by Open Home Foundation and sponsored by Nabu Casa; the Home Asisstant logo is a trademark of Nabu Casa. Cydia, including wordmark
and app icon, is a trademark of SaurikIT, LLC. Hue is a trademark of Signify N.V. Control4 is a registered trademark of Snap One, LLC.

© 2025 JM Creative
JMLLC-SMTBK-20250212
February 2025

The UNIX Programming Environment, 1984

 At its heart is the idea that the power of a system
comes more from the relationships among programs
than from the programs themselves.”

…“

Diagrams were made in Sketch. Page layouts were designed in Sketch and ported to Affinity Publisher for press and qpdf for web.

This book is made available strictly for informational purposes. Its contents are provided on an as-is basis without guarantee or warranty.
The Smarthome project is not offered for sale, trade, or distribution. This project is not paid for, sponsored, or endorsed by any company.
All trademarks mentioned in this book are property of their respectful owners. This book was made without generative AI.

Some art (page 12) is derived from designers from The Noun Project: Puzzle piece icon derived from “add on” icon by Stephan Bgnr; globe icon
derived from “Globe” by Adinda Diah Pramesti. Home Assistant automation icon (robot head, page 21) is derived from the icon part of Lovelace UI.

Alexa is a trademark of Amazon.com, Inc. Apple, AirPlay, the Home Screen button, iPhone, the iPhone outline design, iTunes Store, Mac, MacBook, MacBook Pro,
Night Shift, Retina, Safari, Siri, Spotlight, and True Tone, including wordmarks, designs, and logos, are trademarks of Apple Inc., registered in the U.S. and other
countries and regions. Multi-Touch is a trademark of Apple Inc. (“Apple strongly cautions against installing any software that modifies iOS.”) AVA OS is a trademark
of AVA AG. Bluetooth, including wordmark and logos, are registered trademarks owned by Bluetooth SIG, Inc. Brilliant is a registered trademark of Brilliant Home
Technology, Inc. IOS is a trademark or registered trademark of Cisco in the U.S. and other countries. Matter and Zigbee are registered trademarks of the Connectivity
Standards Alliance. Android and Google Assistant are trademarks of Google LLC. Philips is a registered trademark of Koninklijke Philips N.V. Harmony is a registered
trademark of Logitech International S.A. Helvetica is a registered trademark of Monotype. UNIX is a registered trademark of The Open Group. Home Assistant is a
connected home project by Open Home Foundation and sponsored by Nabu Casa; the Home Asisstant logo is a trademark of Nabu Casa. Cydia, including wordmark
and app icon, is a trademark of SaurikIT, LLC. Hue is a trademark of Signify N.V. Control4 is a registered trademark of Snap One, LLC.

John Matula

Smarthome’s
inner workings

tofrom UXUNIX

John Matula

Smarthome’s
inner workings

tofrom UXUNIX

vii vi Smarthome Tech Book

21
54

Smarthome is the
connected home system I created
that gives me easy, direct, daily control
over lights, plugs, and the air conditioner.

They fill a need that smart homes struggle with:
a way to fully control smart bulbs and devices,
without using my phone or confusing my friends.

With Smarthome, I tap buttons on the wall.
Those buttons work a lot like wall switches.

In fact, Smarthome has replaced all my switches.
I’ve only done that because the utility it offers
is solid and simple, for me and for others.
It keeps it up day after day.

Clarity? Longevity? In a smart home?

In this book, I explain the parts, thinking,
design, and strategy behind Smarthome.

vii vi Smarthome Tech Book

21
54

Smarthome is the
connected home system I created
that gives me easy, direct, daily control
over lights, plugs, and the air conditioner.

They fill a need that smart homes struggle with:
a way to fully control smart bulbs and devices,
without using my phone or confusing my friends.

With Smarthome, I tap buttons on the wall.
Those buttons work a lot like wall switches.

In fact, Smarthome has replaced all my switches.
I’ve only done that because the utility it offers
is solid and simple, for me and for others.
It keeps it up day after day.

Clarity? Longevity? In a smart home?

In this book, I explain the parts, thinking,
design, and strategy behind Smarthome.

viii Smarthome Tech Book

Hub 17

Hardware 23Overview 1

Power outages 27

Hardware buttons 27

Additions 27

Why iPhone? 29

Sensors 25

Upkeep 29

One-time jailbreak 33

Calibration 33

Tweaks 34

Activator 34

List of tweaks 35

Display 25

Jail?! 33

Buttons 39

Intent 39

Pixels 39

Continuous UX 40

Clocks and tools 40

Blending 40

Diagrams 42

Panel screens 46

Comparisons 53

Costs 54

Excerpt of roadmap 55

Competitive analysis 56

Roadmap 54

Stories 53

Web server 20

Color presets 20

Scenes and automations 20

Maintenance 20

Display status 19

Managing the hub 19

Jailbreak 31

Design 37

Product 51

ix

Click or tap to jump to a page.

viii Smarthome Tech Book

Hub 17

Hardware 23Overview 1

Power outages 27

Hardware buttons 27

Additions 27

Why iPhone? 29

Sensors 25

Upkeep 29

One-time jailbreak 33

Calibration 33

Tweaks 34

Activator 34

List of tweaks 35

Display 25

Jail?! 33

Buttons 39

Intent 39

Pixels 39

Continuous UX 40

Clocks and tools 40

Blending 40

Diagrams 42

Panel screens 46

Comparisons 53

Costs 54

Excerpt of roadmap 55

Competitive analysis 56

Roadmap 54

Stories 53

Web server 20

Color presets 20

Scenes and automations 20

Maintenance 20

Display status 19

Managing the hub 19

Jailbreak 31

Design 37

Product 51

ix

1x Smarthome Tech Book

Overview

↺ Back to Contents

1x Smarthome Tech Book

Overview

↺ Back to Contents

Ease
without edicts

Calmly
unbreakable

A compliment
to life at home

For use
by friends

Smarthome should be as flexible as it is capable.

It should do so without relying on rigid, overeager,

or excessive automations. It should respond quickly

and efficiently, even if its controls have sat idle

for hours on end. Things should just work.

Smarthome should continue working when

other things at home are not. The system should

be as helpful as possible, even during outages.

It should interpret problems and try to correct them.

When a situation is resolved, the system should

resume working without resets, reboots, or repairs.

Smarthome should be a system for everyday use.

It should support the variety of life, handling joyful

and stressful times alike. The system should remain

neutral and unobtrusive. It should match the

reliability of plastic wall switches. It should also

work as calmly as those switches, presenting

trustworthy control of the system.

Smarthome should be as clear to my guests as it is

to me. The capability it offers should be rich enough

for daily use without being cumbersome. It should

offer control without apps, logins, or instructions.

It shouldn’t need a voice assistant to work.

Ease
without edicts

Calmly
unbreakable

A compliment
to life at home

For use
by friends

Smarthome should be as flexible as it is capable.

It should do so without relying on rigid, overeager,

or excessive automations. It should respond quickly

and efficiently, even if its controls have sat idle

for hours on end. Things should just work.

Smarthome should continue working when

other things at home are not. The system should

be as helpful as possible, even during outages.

It should interpret problems and try to correct them.

When a situation is resolved, the system should

resume working without resets, reboots, or repairs.

Smarthome should be a system for everyday use.

It should support the variety of life, handling joyful

and stressful times alike. The system should remain

neutral and unobtrusive. It should match the

reliability of plastic wall switches. It should also

work as calmly as those switches, presenting

trustworthy control of the system.

Smarthome should be as clear to my guests as it is

to me. The capability it offers should be rich enough

for daily use without being cumbersome. It should

offer control without apps, logins, or instructions.

It shouldn’t need a voice assistant to work.

Buttons are the interface of Smarthome.
They control lights and devices across the apartment.
Each one responds to taps in a uniform way.

5Overview4 Smarthome Tech Book

Tap a button
to toggle a light.

Tap and hold
a button to brighten
or dim a light…

…or change its color.

Tap a button
to toggle a light.

↺ Back to Contents

Buttons are the interface of Smarthome.
They control lights and devices across the apartment.
Each one responds to taps in a uniform way.

5Overview4 Smarthome Tech Book

Tap a button
to toggle a light.

Tap and hold
a button to brighten
or dim a light…

…or change its color.

Tap a button
to toggle a light.

↺ Back to Contents

6 Smarthome Tech Book

Buttons are grouped together to form
a button panel. It is shown on a touch screen,
placed on the wall to serve as a touch wall switch.

cupboards

button panel for
kitchen and dining with
corresponding lightskitchen

dining table

countertop

↺ Back to Contents

6 Smarthome Tech Book

Buttons are grouped together to form
a button panel. It is shown on a touch screen,
placed on the wall to serve as a touch wall switch.

cupboards

button panel for
kitchen and dining with
corresponding lightskitchen

dining table

countertop

9Overview8 Smarthome Tech Book

Foyer

Living roomBedroom

Kitchen Booth

Dining Bath

1

5

4

3

2

1

3

2

4 5

Each room has one button panel, offering quick
and direct control for the devices in that room.

Bedroom Kitchen
and dining

Recording
booth

Foyer and
living roomBathroom

Light or device controlled by Smarthome

Hardware

Furniture or fixed surface

↺ Back to Contents

9Overview8 Smarthome Tech Book

Foyer

Living roomBedroom

Kitchen Booth

Dining Bath

1

5

4

3

2

1

3

2

4 5

Each room has one button panel, offering quick
and direct control for the devices in that room.

Bedroom Kitchen
and dining

Recording
booth

Foyer and
living roomBathroom

Light or device controlled by Smarthome

Hardware

Furniture or fixed surface

↺ Back to Contents

11Overview10 Smarthome Tech Book

Foyer

Living roomBedroom

Kitchen Booth

Dining Bath
Light or device controlled by Smarthome

Hub

Hardware

1ft 2 3 4 5 6 50 100 200150cm

Together, the five panels control
the complete set of lamps, ceiling lights,
smart plugs, and window air conditioner
in the apartment.

Furniture or fixed surface

↺ Back to Contents

11Overview10 Smarthome Tech Book

Foyer

Living roomBedroom

Kitchen Booth

Dining Bath
Light or device controlled by Smarthome

Hub

Hardware

1ft 2 3 4 5 6 50 100 200150cm

Together, the five panels control
the complete set of lamps, ceiling lights,
smart plugs, and window air conditioner
in the apartment.

Furniture or fixed surface

↺ Back to Contents

13Overview12 Smarthome Tech Book

Home Assistant

intranet
web server

internet

firewalls

device
local
web serverdisplay status

hub (Raspberry Pi) buttons hardware (iPhone 4)

controls
touch

sensor info

no-power
panel

web app
container

The button panels send commands to a hub,
which administers devices on behalf of buttons.
Along with the hardware, each part works
to support a responsive and clear system.

↺ Back to Contents

13Overview12 Smarthome Tech Book

Home Assistant

intranet
web server

internet

firewalls

device
local
web serverdisplay status

hub (Raspberry Pi) buttons hardware (iPhone 4)

controls
touch

sensor info

no-power
panel

web app
container

The button panels send commands to a hub,
which administers devices on behalf of buttons.
Along with the hardware, each part works
to support a responsive and clear system.

↺ Back to Contents

15Overview14 Smarthome Tech Book

Button panel apps run on touch screen hardware. That hardware is
the iPhone 4. Smarthome uses this specific device and model for its
ideal combination of display technology and reliable operating system.
They are inexpensive, enabling Smarthome’s panel-per-room design.

Each iPhone 4 is jailbroken, transforming it from an iOS device into
generic, Unix-like hardware. Button apps are able to read battery and
sensor info. Hardware button actions are replaced with custom actions,
like clicking the home button to show system-wide controls. There are
OS-level optimizations as well, stopping unneeded daemons and hiding
UI components like Notification Center and the lock screen.

Screens brighten and dim to match the brightness of a room.
The hardware reports its ambient light sensor value, which a custom
routine reads in to adjust the backlight according to a custom curve.
They are also tuned to reduce blue light and appear even warmer
at night. These display adjustments run on the hardware itself,
leaving panel web apps performant for interactions.

The hardware performs automatic maintenance regularly. Nightly,
panel screens dim. Weekly, the panels restart. Occasionally, they run
an image retention refresher. This maintenance happens automatically
overnight, and the routines are easily paused and interrupted.

Physically, the hardware is a plain rectangle made of glass and steel.
They are light enough to be affixed to surfaces with removable adhesive,
making them suitable for rented homes. Even as a non-hardwired,
temporary system, the hardware blends in with my home’s décor.

Home Assistant is Smarthome’s hub. It is an open-source smart home
platform that allows devices of different kinds to work compatibly.
The hub gives all those devices a common set of control instructions.

My system relies on the robustness of Home Assistant, particularly
the work of its maintainers and contributors, to work as well as it does.
Smarthome extends that work with the addition of a custom extension,
a display status. This additional status lets buttons appear steady when
a brief disconnection or a delayed response occurs.

Home Assistant runs locally on a Raspberry Pi, accessible at home
over the local intranet. The button panel web apps are hosted there too,
also locally accessible. The button apps and the legacy web features
they are built with are deliberately hosted separately, which allows the
display hardware to run the apps properly.

Buttons are presented in panels, and those panels are web apps.
The panels are designed to be always available. Like their plastic switch
counterparts, the buttons take a single action — a tap — to control light
and device settings. Auxiliary control is offered with tap-and-hold
gestures. A button is designed to be legible and respond quickly,
clearly indicating the device it controls and the status it currently has.

Button panels are view controllers. They connect to a back-end hub,
which relays commands on behalf of buttons and returns a full system
status back to them. The panels interpret that raw status and present
a simplified version of it through button states and indicators.

The web apps are built for long-term use. Feedback and rendering
is pushed to the GPU, leaving the CPU to handle timers and requests.
Repaints occur only when needed, mimicking one-way binding
found in heavier front-end frameworks. As simple HTML pages
with SVG controls, the apps are very performant. The apps
smoothly handle interaction after hours of sitting idle.

The button panels also act as household tools. Depending
on the panel, buttons open up air conditioner controls, clocks,
and recording tools. These tools exist as separate panel apps
that are injected into the main app instance.

I designed Smarthome like a product,
using goals to determine how it would be built.
The result is a system that provides rich, robust
control that’s still easy enough for guests to use.

↺ Back to Contents

15Overview14 Smarthome Tech Book

Button panel apps run on touch screen hardware. That hardware is
the iPhone 4. Smarthome uses this specific device and model for its
ideal combination of display technology and reliable operating system.
They are inexpensive, enabling Smarthome’s panel-per-room design.

Each iPhone 4 is jailbroken, transforming it from an iOS device into
generic, Unix-like hardware. Button apps are able to read battery and
sensor info. Hardware button actions are replaced with custom actions,
like clicking the home button to show system-wide controls. There are
OS-level optimizations as well, stopping unneeded daemons and hiding
UI components like Notification Center and the lock screen.

Screens brighten and dim to match the brightness of a room.
The hardware reports its ambient light sensor value, which a custom
routine reads in to adjust the backlight according to a custom curve.
They are also tuned to reduce blue light and appear even warmer
at night. These display adjustments run on the hardware itself,
leaving panel web apps performant for interactions.

The hardware performs automatic maintenance regularly. Nightly,
panel screens dim. Weekly, the panels restart. Occasionally, they run
an image retention refresher. This maintenance happens automatically
overnight, and the routines are easily paused and interrupted.

Physically, the hardware is a plain rectangle made of glass and steel.
They are light enough to be affixed to surfaces with removable adhesive,
making them suitable for rented homes. Even as a non-hardwired,
temporary system, the hardware blends in with my home’s décor.

Home Assistant is Smarthome’s hub. It is an open-source smart home
platform that allows devices of different kinds to work compatibly.
The hub gives all those devices a common set of control instructions.

My system relies on the robustness of Home Assistant, particularly
the work of its maintainers and contributors, to work as well as it does.
Smarthome extends that work with the addition of a custom extension,
a display status. This additional status lets buttons appear steady when
a brief disconnection or a delayed response occurs.

Home Assistant runs locally on a Raspberry Pi, accessible at home
over the local intranet. The button panel web apps are hosted there too,
also locally accessible. The button apps and the legacy web features
they are built with are deliberately hosted separately, which allows the
display hardware to run the apps properly.

Buttons are presented in panels, and those panels are web apps.
The panels are designed to be always available. Like their plastic switch
counterparts, the buttons take a single action — a tap — to control light
and device settings. Auxiliary control is offered with tap-and-hold
gestures. A button is designed to be legible and respond quickly,
clearly indicating the device it controls and the status it currently has.

Button panels are view controllers. They connect to a back-end hub,
which relays commands on behalf of buttons and returns a full system
status back to them. The panels interpret that raw status and present
a simplified version of it through button states and indicators.

The web apps are built for long-term use. Feedback and rendering
is pushed to the GPU, leaving the CPU to handle timers and requests.
Repaints occur only when needed, mimicking one-way binding
found in heavier front-end frameworks. As simple HTML pages
with SVG controls, the apps are very performant. The apps
smoothly handle interaction after hours of sitting idle.

The button panels also act as household tools. Depending
on the panel, buttons open up air conditioner controls, clocks,
and recording tools. These tools exist as separate panel apps
that are injected into the main app instance.

I designed Smarthome like a product,
using goals to determine how it would be built.
The result is a system that provides rich, robust
control that’s still easy enough for guests to use.

↺ Back to Contents

1716 Smarthome Tech Book

Hub

↺ Back to Contents

1716 Smarthome Tech Book

Hub

↺ Back to Contents

18 Smarthome Tech Book 19Hub

Home Assistant offers its own UI, called
Lovelace, and it is beyond robust. It has
workflows to add new devices, manage
scenes, assign rooms and groups, create
automations, and more. You can think of it as
the administrator’s view of Smarthome.

Lovelace also offers day-to-day control of
devices, through dashboards. By default,
everything that Home Assistant manages gets
thrown into one. That can be a lot, and
Lovelace lets you make custom dashboards
that are more understandable. Keep going far
enough, and you can come up with screens
similar to Smarthome’s button panels.

Smarthome uses a custom-built UI for its
buttons, however, as Lovelace uses modern
features that aren’t supported on the iPhone 4
(it’s understandable). Smarthome instead uses
custom web apps I built that run alongside
Home Assistant and hook into its API.
Smarthome sends a button tap’s action and
Home Assistant handles the device command.

Devices occasionally lose their connections to
the hub. These short and infrequent “blips”
occur when Wi-Fi signal in the house is spotty
or out of range. Say a light is on and a blip
occurs, where the bulb is still physically
shining but Home Assistant can’t reach it. In
these cases, Home Assistant changes the
device’s status to “unavailable.” When it re-
establishes a connection, it snaps its status
back to “on” and once again reports the true
state of the device.

Home Assistant shows these status changes
as they occur, even in typical blips that last for
a few seconds. That makes them helpful from a
management point of view but results in
buttons that “flicker” on Smarthome’s panels.
Smarthome needs to operate more calmly,
even if it’s only for show during blips. It adds a
“display status” mechanism to support this.

The display status is a timed comparison of a
device’s actual and intended status. Its
intended status comes from the most recent
button press, telling it what it should do. Its
actual status comes from whatever the device
reports to Home Assistant. If something acts
up, Smarthome keeps showing the intended
state until the mismatch in statuses is
resolved. If the timed “grace period” expires,
Smarthome gives up and rolls back the display
state to the actual “unavailable” state.

Returning to that light, when it’s on and
suddenly blips, its actual status flips to
“unavailable.” Its intended status is still “on,”
so its display status (and the panel) remains
“on” as well. Meanwhile, Home Assistant and
Smarthome both try to reconnect to the
blipped light. When the status returns to “on”
the mismatch is resolved, and the buttons
continue to show the unflinching state of “on.”

This also helps devices that are slow to report
their actual status. The air conditioner, for
instance, responds to commands instantly but
can take up to two minutes to actually reply to
Home Assistant. Smarthome shows the
intended state immediately as the unit takes
immediate action (the audible “clunk” is the
real-world confirmation). Eventually, the air
conditioner reports its status, matching what
Smarthome’s buttons are already showing.

 At the center of Smarthome is
Home Assistant, a smart home platform that
pr ior it izes local control , pr ivacy, and
extensibility. The platform is a popular choice
for homes big and small. In mine, it’s used to
take in and reply to Smarthome’s button taps.

Part of Home Assistant’s appeal is its
extensibility. The hub is open and community-
built, so unlike some others, it works with
devices across different brands. It also lets
Smarthome use custom, behind-the-scenes
logic that help the system feel snappy.

The hub acts as the single source of data in the
system, from light statuses to color presets.
Actions and responses are sent over the local
network. If the internet goes out, the hub and
the devices it manages continue to work.

Smarthome uses web apps that also live on the
hub. They are separate from Home Assistant.
The apps communicate with the platform, and
they respond to the panel hardware’s sensors.

Display status

Managing the hub

↺ Back to Contents

18 Smarthome Tech Book 19Hub

Home Assistant offers its own UI, called
Lovelace, and it is beyond robust. It has
workflows to add new devices, manage
scenes, assign rooms and groups, create
automations, and more. You can think of it as
the administrator’s view of Smarthome.

Lovelace also offers day-to-day control of
devices, through dashboards. By default,
everything that Home Assistant manages gets
thrown into one. That can be a lot, and
Lovelace lets you make custom dashboards
that are more understandable. Keep going far
enough, and you can come up with screens
similar to Smarthome’s button panels.

Smarthome uses a custom-built UI for its
buttons, however, as Lovelace uses modern
features that aren’t supported on the iPhone 4
(it’s understandable). Smarthome instead uses
custom web apps I built that run alongside
Home Assistant and hook into its API.
Smarthome sends a button tap’s action and
Home Assistant handles the device command.

Devices occasionally lose their connections to
the hub. These short and infrequent “blips”
occur when Wi-Fi signal in the house is spotty
or out of range. Say a light is on and a blip
occurs, where the bulb is still physically
shining but Home Assistant can’t reach it. In
these cases, Home Assistant changes the
device’s status to “unavailable.” When it re-
establishes a connection, it snaps its status
back to “on” and once again reports the true
state of the device.

Home Assistant shows these status changes
as they occur, even in typical blips that last for
a few seconds. That makes them helpful from a
management point of view but results in
buttons that “flicker” on Smarthome’s panels.
Smarthome needs to operate more calmly,
even if it’s only for show during blips. It adds a
“display status” mechanism to support this.

The display status is a timed comparison of a
device’s actual and intended status. Its
intended status comes from the most recent
button press, telling it what it should do. Its
actual status comes from whatever the device
reports to Home Assistant. If something acts
up, Smarthome keeps showing the intended
state until the mismatch in statuses is
resolved. If the timed “grace period” expires,
Smarthome gives up and rolls back the display
state to the actual “unavailable” state.

Returning to that light, when it’s on and
suddenly blips, its actual status flips to
“unavailable.” Its intended status is still “on,”
so its display status (and the panel) remains
“on” as well. Meanwhile, Home Assistant and
Smarthome both try to reconnect to the
blipped light. When the status returns to “on”
the mismatch is resolved, and the buttons
continue to show the unflinching state of “on.”

This also helps devices that are slow to report
their actual status. The air conditioner, for
instance, responds to commands instantly but
can take up to two minutes to actually reply to
Home Assistant. Smarthome shows the
intended state immediately as the unit takes
immediate action (the audible “clunk” is the
real-world confirmation). Eventually, the air
conditioner reports its status, matching what
Smarthome’s buttons are already showing.

 At the center of Smarthome is
Home Assistant, a smart home platform that
pr ior it izes local control , pr ivacy, and
extensibility. The platform is a popular choice
for homes big and small. In mine, it’s used to
take in and reply to Smarthome’s button taps.

Part of Home Assistant’s appeal is its
extensibility. The hub is open and community-
built, so unlike some others, it works with
devices across different brands. It also lets
Smarthome use custom, behind-the-scenes
logic that help the system feel snappy.

The hub acts as the single source of data in the
system, from light statuses to color presets.
Actions and responses are sent over the local
network. If the internet goes out, the hub and
the devices it manages continue to work.

Smarthome uses web apps that also live on the
hub. They are separate from Home Assistant.
The apps communicate with the platform, and
they respond to the panel hardware’s sensors.

Display status

Managing the hub

↺ Back to Contents

commands to either:
• attempt a mismatch fix
• give up on intended status

actual status

status observer

display status

desired action

commands

Outside of Home Assistant, the other major
component on the Raspberry Pi is the intranet
web server. This basic web server hosts the
web app files that the display panels connect
to. They are not internet-as-in-WWW-hosted
but intranet-as-in-locally-hosted.

The app files are developed on my laptop, and
the production files are uploaded to the server
via SSH. I can test the button panels back on
my Mac by pointing a browser to the
Raspberry Pi and opening one.

In addition, the web server hosts configuration
profiles for the hardware. These are font files
and dark interface elements that are
downloaded and applied when setting up
panel hardware for the system.

As needed, I update and review the hub.
Updates remain a manual process in order to
give me a chance to review them beforehand.

Smarthome reflects my preference for direct
control over automations, but a couple are
included to fix small annoyances. For instance,
each time I turn on the air conditioner, it sets
itself to “auto fan” mode (the kind where the
fan starts and stops over and over). On the hub,
an automation catches this and kicks it back
into steady-on fan mode.

Notably, lights are not automated: I don’t want
to be spooked by scheduled lights suddenly
turning on around the house.

20 Smarthome Tech Book 21Hub

Home Assistant keeps track of three color
presets and calibrated Kelvin temperature
values. These settings are a mix of system-
wide and per-device values, which I set as I
add a new bulb to the hub.

Smarthome uses a daylight and warm white
light that has been calibrated, so that a bulb
doesn’t look flourescent blue or downright
orange. If a specially tuned one isn’t available
for a given light, then it falls back to the
generic, system-wide settings I’ve set.

Similarly, the three color presets are shared
across the whole system. These color presets
(specialty colors other than white) are setup
through Home Assistant as custom variables.
Each preset has an actual (XY) color value and
a display (RGB) value. Smarthome’s buttons
show the display color and the actual color
gets sent to Home Assistant to relay to the
device. Splitting the color into two helps the
case where a device’s setting looks totally
different from its actual color (“it looks purple
but the screen says blue?”).

Most rooms are small enough for Smarthome
to offer per-device control. The living room has
several lamps, though, so its button panel
controls the whole room. Smarthome does this
by making use of scenes, capability built into
Home Assistant to set multiple devices at
once. Just like individual lights, Home Assistant
sets all applicable devices according to the
preset, and the intended scene is captured by
the display status system.

Color presets

Web server

Display status system

Scenes and automations

Status for a “blippy” device

Maintenance

Home Assistant
[light.123].state

status: {
 actual: { status: off },
 intended: { status: on },
 display: { status: on },
 updated: 2025-01-15T02:32:53
}

button
light.123

device
light.123

button
status.display

Home Assistant
status.actual

mismatch detector
automation.retry_intended_status

↺ Back to Contents

commands to either:
• attempt a mismatch fix
• give up on intended status

actual status

status observer

display status

desired action

commands

Outside of Home Assistant, the other major
component on the Raspberry Pi is the intranet
web server. This basic web server hosts the
web app files that the display panels connect
to. They are not internet-as-in-WWW-hosted
but intranet-as-in-locally-hosted.

The app files are developed on my laptop, and
the production files are uploaded to the server
via SSH. I can test the button panels back on
my Mac by pointing a browser to the
Raspberry Pi and opening one.

In addition, the web server hosts configuration
profiles for the hardware. These are font files
and dark interface elements that are
downloaded and applied when setting up
panel hardware for the system.

As needed, I update and review the hub.
Updates remain a manual process in order to
give me a chance to review them beforehand.

Smarthome reflects my preference for direct
control over automations, but a couple are
included to fix small annoyances. For instance,
each time I turn on the air conditioner, it sets
itself to “auto fan” mode (the kind where the
fan starts and stops over and over). On the hub,
an automation catches this and kicks it back
into steady-on fan mode.

Notably, lights are not automated: I don’t want
to be spooked by scheduled lights suddenly
turning on around the house.

20 Smarthome Tech Book 21Hub

Home Assistant keeps track of three color
presets and calibrated Kelvin temperature
values. These settings are a mix of system-
wide and per-device values, which I set as I
add a new bulb to the hub.

Smarthome uses a daylight and warm white
light that has been calibrated, so that a bulb
doesn’t look flourescent blue or downright
orange. If a specially tuned one isn’t available
for a given light, then it falls back to the
generic, system-wide settings I’ve set.

Similarly, the three color presets are shared
across the whole system. These color presets
(specialty colors other than white) are setup
through Home Assistant as custom variables.
Each preset has an actual (XY) color value and
a display (RGB) value. Smarthome’s buttons
show the display color and the actual color
gets sent to Home Assistant to relay to the
device. Splitting the color into two helps the
case where a device’s setting looks totally
different from its actual color (“it looks purple
but the screen says blue?”).

Most rooms are small enough for Smarthome
to offer per-device control. The living room has
several lamps, though, so its button panel
controls the whole room. Smarthome does this
by making use of scenes, capability built into
Home Assistant to set multiple devices at
once. Just like individual lights, Home Assistant
sets all applicable devices according to the
preset, and the intended scene is captured by
the display status system.

Color presets

Web server

Display status system

Scenes and automations

Status for a “blippy” device

Maintenance

Home Assistant
[light.123].state

status: {
 actual: { status: off },
 intended: { status: on },
 display: { status: on },
 updated: 2025-01-15T02:32:53
}

button
light.123

device
light.123

button
status.display

Home Assistant
status.actual

mismatch detector
automation.retry_intended_status

↺ Back to Contents

2322 Smarthome Tech Book

Hardware

↺ Back to Contents

2322 Smarthome Tech Book

Hardware

↺ Back to Contents

The button panel apps make full use of the
hardware’s high-resolution display. They have
good contrast and accurate color, even when
viewed at angles.

The displays are backlit LCD panels. Measured,
they range from less than a nit of brightness to
around 570 nits of brightness. In practice, that
means Smarthome will only cast a glow when
a room is pitch black, and it will get bright
enough to be legible in a sunbeam. The
display’s brightness diminishes when looking
at it from an angle, which slightly hinders
daytime legibility but actually improves
nighttime use. (In effect, the display “channels”
its brightness straight ahead, throwing less
unwanted light off to the sides.)

Overall, the image that the display provides is
fantastic, even at odd viewing angles. The
display is readable at angles up to 80° left or
right of center, as well as from diagonal,
horizontal-and-vertical viewing angles. The
kitchen panel, for instance, is in a hallway; the
display technology allows it to remain usable
as I walk by it.

The button panel apps and hardware work in
concert, working together to create an
integrated appearance. One example is the
black bezel around the LCD panel’s edge. Look
closely, and you’ll see this black border
wrapping around the entire “picture” of the
screen. The button apps use this to their
advantage by placing controls right against
that bezel edge. The background is black, so it
blends in. The hardware, meanwhile, is
accurate enough to catch taps even when
they’re right near that bezel.

The display does have one drawback: its tint.
The color they give off is uncomfortably blue
and needs adjustment for nighttime use. It also
needs to adjust its backlight automatically
throughout the day. These things are possible
with the capabilities provided by the jailbreak,
and these things are set up once as part of the
hardware’s initial setup.

The foyer/living room, recording booth,
bathroom, kitchen, and bedroom each contain
a panel. Each one runs a button panel app,
which connects to the hub to talk to devices.
It’s the hardware’s job to support those apps,
ensuring the hardware is running efficiently
and in a way that suits the room nicely.

The hardware is able to do that by measuring
its surroundings through its sensors. It
interprets values like room brightness,
orientation, and location, and responds to them
as necessary.

For its display, the hardware checks the
ambient light sensor, compares it against a
mapped value, and applies that value
gradually. (Partly cloudy days are no big deal.)

The display’s color uses geolocation to find
sunrise and sunset t imes. As sunset
approaches, the displays smoothly switch to a
tint that’s (even) warmer than their daytime
setting. As sunrise times adjust throughout the
year, the displays adjust with it.

These adjustments happen automatically,
managed by apps and processes that run on
the command line.

24 Smarthome Tech Book 25Hardware

 Smarthome is controlled by
buttons in button apps, and those apps run on
hardware: multi-touch screens that have
excellent display clarity and brightness,
wireless connectivity, power management,
security, and sound.

Most of us know them by their given name, the
iPhone 4. While they no longer connect to cell
towers, all of its other specs work well for
applications like Smarthome. At eleven years
old, there are plenty of still-good ones to be
found, and for a good price secondhand.

The phones are jailbroken, which means they
can be opened up to do all sorts of non-phone
things. It turns the iPhone 4 into an all-in-one
Unix-like computer with a touchscreen. I tend
to call them “hardware” or “panels” in this book
to reflect how Smarthome uses their fully-
opened-up abilities.

In daily use, each panel manages itself through
the use of its sensors. Reading things like the
ambient light sensor and power status, it can
adjust itself to look and work as best it can.

Display

Sensors

↺ Back to Contents

The button panel apps make full use of the
hardware’s high-resolution display. They have
good contrast and accurate color, even when
viewed at angles.

The displays are backlit LCD panels. Measured,
they range from less than a nit of brightness to
around 570 nits of brightness. In practice, that
means Smarthome will only cast a glow when
a room is pitch black, and it will get bright
enough to be legible in a sunbeam. The
display’s brightness diminishes when looking
at it from an angle, which slightly hinders
daytime legibility but actually improves
nighttime use. (In effect, the display “channels”
its brightness straight ahead, throwing less
unwanted light off to the sides.)

Overall, the image that the display provides is
fantastic, even at odd viewing angles. The
display is readable at angles up to 80° left or
right of center, as well as from diagonal,
horizontal-and-vertical viewing angles. The
kitchen panel, for instance, is in a hallway; the
display technology allows it to remain usable
as I walk by it.

The button panel apps and hardware work in
concert, working together to create an
integrated appearance. One example is the
black bezel around the LCD panel’s edge. Look
closely, and you’ll see this black border
wrapping around the entire “picture” of the
screen. The button apps use this to their
advantage by placing controls right against
that bezel edge. The background is black, so it
blends in. The hardware, meanwhile, is
accurate enough to catch taps even when
they’re right near that bezel.

The display does have one drawback: its tint.
The color they give off is uncomfortably blue
and needs adjustment for nighttime use. It also
needs to adjust its backlight automatically
throughout the day. These things are possible
with the capabilities provided by the jailbreak,
and these things are set up once as part of the
hardware’s initial setup.

The foyer/living room, recording booth,
bathroom, kitchen, and bedroom each contain
a panel. Each one runs a button panel app,
which connects to the hub to talk to devices.
It’s the hardware’s job to support those apps,
ensuring the hardware is running efficiently
and in a way that suits the room nicely.

The hardware is able to do that by measuring
its surroundings through its sensors. It
interprets values like room brightness,
orientation, and location, and responds to them
as necessary.

For its display, the hardware checks the
ambient light sensor, compares it against a
mapped value, and applies that value
gradually. (Partly cloudy days are no big deal.)

The display’s color uses geolocation to find
sunrise and sunset t imes. As sunset
approaches, the displays smoothly switch to a
tint that’s (even) warmer than their daytime
setting. As sunrise times adjust throughout the
year, the displays adjust with it.

These adjustments happen automatically,
managed by apps and processes that run on
the command line.

24 Smarthome Tech Book 25Hardware

 Smarthome is controlled by
buttons in button apps, and those apps run on
hardware: multi-touch screens that have
excellent display clarity and brightness,
wireless connectivity, power management,
security, and sound.

Most of us know them by their given name, the
iPhone 4. While they no longer connect to cell
towers, all of its other specs work well for
applications like Smarthome. At eleven years
old, there are plenty of still-good ones to be
found, and for a good price secondhand.

The phones are jailbroken, which means they
can be opened up to do all sorts of non-phone
things. It turns the iPhone 4 into an all-in-one
Unix-like computer with a touchscreen. I tend
to call them “hardware” or “panels” in this book
to reflect how Smarthome uses their fully-
opened-up abilities.

In daily use, each panel manages itself through
the use of its sensors. Reading things like the
ambient light sensor and power status, it can
adjust itself to look and work as best it can.

Display

Sensors

↺ Back to Contents

The hardware used in the system is reused.
Smarthome can only afford to be a panel-per-
room system because of their price  —  and
since it moves with me from rental to rental,
the hardware never becomes a sunk cost.
Nearly all of the phones are purchased used.

Panels have five built-in buttons that
Smarthome uses. In iPhone terms, that’s the
sleep/wake (top) button, volume (side)
buttons, ring/silent switch, and home button.

The sleep/wake button on the top-right of the
panel works like it does on an iPhone: it puts
the display to sleep and wakes it up again. The
button panel app immediately returns when
the display is woken up (no slide to unlock).

The volume buttons on the side set screen
brightness, overriding readings from the
ambient light sensor. Above those, the tiny
ring/silent switch shows a service menu when
toggled back and forth.

The home button brings up Smarthome’s
system-wide view, sort of like a home screen
for Smarthome. All of these actions, even
messing with the home button action, are
possible because the hardware is jailbroken.
When a hardware button is clicked, it’s caught
by the system and redirected for use by
Smarthome. It does this without needing to
modify the hardware itself.

Panel hardware runs run off of AC charger
power by default. When electric cuts out, the
hardware switches over to battery. This event
triggers Smarthome to exit the current app and
open the no-power app. It can be accessed
because it is a web app that lives on the
hardware itself, always accessible as long as
the panel is turned on.

Hardware buttons

27Hardware

The app is a simple clock with a fullscreen
flashlight. It displays battery remaining by
accessing the battery sensor directly. It also
cranks up the brightness, overriding the
automatic settings, when the display is acting
as a flashlight.

Despite showing different buttons, the
hardware works as normal. Screen brightness
and color tints are still adjusted, just a little less
eagerly to save battery. Hardware buttons are
still captured for use by Smarthome, which the
no-power app uses for emergency shortcuts to
the flashlight.

While it’s in this mode, the battery has enough
capacity to last for a decently long while. In
testing, fully-charged hardware running
Smarthome’s no-power mode lasts up to a day
when the screen is fully on and bright. On
standby, with the display dimmed, it lasts well
over a week. Smarthome relies on iOS’s built-
in power management to handle all this,
without the need for additional refinement.

When power comes back, the hardware
switches back to the charger and sends
another system command to bring back the
default button panel . Things connect
automatically and the hardware chugs along.

Power outages

Additions

The black bezel, partially highlighted,
blends in with the button panel’s interface.

Components used by Smarthome

Proximity sensor

Ambient light sensor

Speaker

Display and
backlight control

Charging port

Home button

Side buttons

Ring/silent switch

Top button

↺ Back to Contents

The hardware used in the system is reused.
Smarthome can only afford to be a panel-per-
room system because of their price  —  and
since it moves with me from rental to rental,
the hardware never becomes a sunk cost.
Nearly all of the phones are purchased used.

Panels have five built-in buttons that
Smarthome uses. In iPhone terms, that’s the
sleep/wake (top) button, volume (side)
buttons, ring/silent switch, and home button.

The sleep/wake button on the top-right of the
panel works like it does on an iPhone: it puts
the display to sleep and wakes it up again. The
button panel app immediately returns when
the display is woken up (no slide to unlock).

The volume buttons on the side set screen
brightness, overriding readings from the
ambient light sensor. Above those, the tiny
ring/silent switch shows a service menu when
toggled back and forth.

The home button brings up Smarthome’s
system-wide view, sort of like a home screen
for Smarthome. All of these actions, even
messing with the home button action, are
possible because the hardware is jailbroken.
When a hardware button is clicked, it’s caught
by the system and redirected for use by
Smarthome. It does this without needing to
modify the hardware itself.

Panel hardware runs run off of AC charger
power by default. When electric cuts out, the
hardware switches over to battery. This event
triggers Smarthome to exit the current app and
open the no-power app. It can be accessed
because it is a web app that lives on the
hardware itself, always accessible as long as
the panel is turned on.

Hardware buttons

27Hardware

The app is a simple clock with a fullscreen
flashlight. It displays battery remaining by
accessing the battery sensor directly. It also
cranks up the brightness, overriding the
automatic settings, when the display is acting
as a flashlight.

Despite showing different buttons, the
hardware works as normal. Screen brightness
and color tints are still adjusted, just a little less
eagerly to save battery. Hardware buttons are
still captured for use by Smarthome, which the
no-power app uses for emergency shortcuts to
the flashlight.

While it’s in this mode, the battery has enough
capacity to last for a decently long while. In
testing, fully-charged hardware running
Smarthome’s no-power mode lasts up to a day
when the screen is fully on and bright. On
standby, with the display dimmed, it lasts well
over a week. Smarthome relies on iOS’s built-
in power management to handle all this,
without the need for additional refinement.

When power comes back, the hardware
switches back to the charger and sends
another system command to bring back the
default button panel . Things connect
automatically and the hardware chugs along.

Power outages

Additions

The black bezel, partially highlighted,
blends in with the button panel’s interface.

Components used by Smarthome

Proximity sensor

Ambient light sensor

Speaker

Display and
backlight control

Charging port

Home button

Side buttons

Ring/silent switch

Top button

↺ Back to Contents

28 Smarthome Tech Book

0.37 in.
0.93 cm

0.37 in.
0.93 cm

4.50 in.
11.52 cm

2.31 in.
5.86 cm1 : 4.56 scale

iPhone 4 (GSM)

Dimensions

29Hardware

I use an iPhone 4 as Smarthome’s panel
hardware because it continues to offer the
most system capability in a fit-and-finished
form factor. Starting ten years ago with
experiments and continuing onto Smarthome,
its ability to be repurposed, specifically display
and interactive uses, is hard to match.

In those ten years, I have learned that the
iPhone 4 is a pile of lucky breaks to support
being converted from a phone into a Unix-like
computer. For instance, iOS devices can only
be upgraded to certain versions. For the
iPhone 4, the only one it can upgrade to is one
that can be opened up (jailbroken). The method
is a once-and-done process (an untethered
jailbreak). It works regardless of its original
carrier (GSM versus CDMA is irrelevant).

Those facts together mean: any iPhone 4 today
can be opened up, once, for permanent reuse.
The reward is a high-resolution, multi-touch
display packed with sensors and power
management that can be freely put to use.

As the years go by, I keep tabs on other
devices: newer iPhones, Android phones, non-
phone panels and screens. Still, the iPhone 4
wins out because of its relative cost to all of the
capabilities it has to offer. Other display
technology, like OLED displays, offer brighter
color, but a fixed image like the button panel
apps would ruin them with burn-in. Buying
pre-built panels would absolve me of some
setup time, but their high cost would prohibit a
per-home design and still wouldn’t give
Smarthome the full set of sensors it requires to
work well. (I discuss more comparisons like
these in Product’s competitive analysis matrix.)

When adding a new device, I look for listings
that show a phone that’s been well taken care
of. The listing should have actual photos of the
device (none of those “you might get
something similar” ones). It should have one
photo of the screen of the device showing its
home screen (a tacit confirmation that the
device is not placed under an activation lock).

I also double-check that the listing is truly an
iPhone 4 and not a misidentified 4S. There are
two ways to tell. On the back panel, the 4 has a
bunch of regulatory text under the larger
“iPhone” label (the 4S will not). When at the
home screen, by default, the 4 has a starry-
blue iOS 7 background and UI text set in
Helvetica Neue (the 4S will likely have text set
in the San Francisco font, on a blue-and-
orange background, indicating iOS 9).

For spare batteries and cords, eBay is also
good here. The local reuse store is likely to
have an endless supply of 30-pin cords, too.

The hardware contains lithium-ion batteries,
which need replacement every several years.
When adding a panel, I check its battery cycles
and health, and then I keep an eye on them
during daily use. Only one battery has ever
needed to be swapped out, my original iPhone
in 2017 — to be fair, it survived college.

Since the screens pretty much show the same
buttons day after day, image retention and
burn-in are risks. To give their screens a break,
the hardware automatically dims overnight.
The button panel is still “on,” though,
accessible by clicking any hardware button.

Upkeep

Why iPhone?

↺ Back to Contents

28 Smarthome Tech Book

0.37 in.
0.93 cm

0.37 in.
0.93 cm

4.50 in.
11.52 cm

2.31 in.
5.86 cm1 : 4.56 scale

iPhone 4 (GSM)

Dimensions

29Hardware

I use an iPhone 4 as Smarthome’s panel
hardware because it continues to offer the
most system capability in a fit-and-finished
form factor. Starting ten years ago with
experiments and continuing onto Smarthome,
its ability to be repurposed, specifically display
and interactive uses, is hard to match.

In those ten years, I have learned that the
iPhone 4 is a pile of lucky breaks to support
being converted from a phone into a Unix-like
computer. For instance, iOS devices can only
be upgraded to certain versions. For the
iPhone 4, the only one it can upgrade to is one
that can be opened up (jailbroken). The method
is a once-and-done process (an untethered
jailbreak). It works regardless of its original
carrier (GSM versus CDMA is irrelevant).

Those facts together mean: any iPhone 4 today
can be opened up, once, for permanent reuse.
The reward is a high-resolution, multi-touch
display packed with sensors and power
management that can be freely put to use.

As the years go by, I keep tabs on other
devices: newer iPhones, Android phones, non-
phone panels and screens. Still, the iPhone 4
wins out because of its relative cost to all of the
capabilities it has to offer. Other display
technology, like OLED displays, offer brighter
color, but a fixed image like the button panel
apps would ruin them with burn-in. Buying
pre-built panels would absolve me of some
setup time, but their high cost would prohibit a
per-home design and still wouldn’t give
Smarthome the full set of sensors it requires to
work well. (I discuss more comparisons like
these in Product’s competitive analysis matrix.)

When adding a new device, I look for listings
that show a phone that’s been well taken care
of. The listing should have actual photos of the
device (none of those “you might get
something similar” ones). It should have one
photo of the screen of the device showing its
home screen (a tacit confirmation that the
device is not placed under an activation lock).

I also double-check that the listing is truly an
iPhone 4 and not a misidentified 4S. There are
two ways to tell. On the back panel, the 4 has a
bunch of regulatory text under the larger
“iPhone” label (the 4S will not). When at the
home screen, by default, the 4 has a starry-
blue iOS 7 background and UI text set in
Helvetica Neue (the 4S will likely have text set
in the San Francisco font, on a blue-and-
orange background, indicating iOS 9).

For spare batteries and cords, eBay is also
good here. The local reuse store is likely to
have an endless supply of 30-pin cords, too.

The hardware contains lithium-ion batteries,
which need replacement every several years.
When adding a panel, I check its battery cycles
and health, and then I keep an eye on them
during daily use. Only one battery has ever
needed to be swapped out, my original iPhone
in 2017 — to be fair, it survived college.

Since the screens pretty much show the same
buttons day after day, image retention and
burn-in are risks. To give their screens a break,
the hardware automatically dims overnight.
The button panel is still “on,” though,
accessible by clicking any hardware button.

Upkeep

Why iPhone?

↺ Back to Contents

3130 Smarthome Tech Book

Jailbreak

↺ Back to Contents

3130 Smarthome Tech Book

Jailbreak

↺ Back to Contents

Smarthome needs hardware that it can fully
control. By default, iPhones do not meet that
need: there’s no third-party apps, no command
line access, no file hosting. If you consider
these features “locked away,” then the jailbreak
lets them run free. The capabilities that are
usually off-limits are no longer restricted,
which means you’ve got some nice, general
purpose hardware to add to a system.

There’s irony in Smarthome using such a
severe-sounding process. “Jailbreak” sounds
like I’m hacking my way into the phone to muck
around with rickety apps — not the case. This
process simply enables an unrestricted, Unix-
like experience that would be impossible with
unmodified iOS.

In any case, jailbreaking is legal in the
United States through 1998’s Digital Millenium
Copyright Act. In 2010, it was clarified that the
Act protects jailbreaking. The U.S. Copyright
Office and the Fifth Circuit Court of Appeals
independently clarified this, identifying it as a
form of fair use with regard to copyright law.

Really, the one slight risk in all this is the
possibility of a new iOS update for the iPhone,
one that would patch up its jailbreak ability.
This is very unlikely to happen: the iPhone 4’s
last update was ten years ago and counting.

Once the jailbreak is added, the iPhone runs
the same, but with one new app. It’s Cydia, an
“app store” that looks at different lists of
community-made apps and system changes,
which are called tweaks. The app (and the
related command line inteface it enables)
makes it possible to install these.

Each of these tweaks offers a slice of
functionality to manage the hardware properly.
One app, for instance, gives the hardware its
custom backlight adjustments. Another tweak
disables the lock screen so that waking the
display jumps right back to the panel app.

Since this stuff changes hardware and system
settings, only tested, trusted apps and tweaks
are used in the system. In reality, this means I
reach for the same list of apps and tweaks that
have worked well for years — some were made
for the very first iPhone in 2009!

Those apps and tweaks are Debian package
files, either added manually or via Cydia. Once
the files are on the hardware, they get installed,
and I reboot. At this point, I’m ready to
configure and calibrate the display.

32 Smarthome Tech Book 33Jailbreak

 Getting a panel ready for
Smarthome takes about a day. All five in the
system are the result of a one-time checklist:
after I physically clean the hardware,  reset it,
and check its battery health, I jailbreak it.

Jailbreaking refers to the act of opening up a
device that has been locked down by its
manufacturer. For the iPhone 4 acting as the
panel hardware, this removes restrictions like
“only use apps from the App Store!” or “no
touching that sensor!” By jailbreaking, the
phone is restored to an opened state in the way
that laptops and Raspberry Pis are. Since the
process is a legal, once-and-done process, it’s
an unfussy way to repurpose hardware in fully
capable ways.

That setup checklist continues after the
jalbreak is added. I change the appearance of
the system to darker settings, I set up cause-
and-effect actions to respond to outages and
brightness changes, and I optimize background
processes from the command line. All of these
changes would otherwise be impossible on a
typical, locked down iPhone.

Jail?!

One-time jailbreak

Calibration

I calibrate the color temperature of the display
and the brightening-and-dimming behavior of
its backlight. It’s applied across the entire
operating system of the hardware, a feature of
unrestricted system access.

The display’s color temperature is adjusted
with f.lux, using its GPS sensor. During setup,
the f.lux app requests access to location
information. The GPS reports coordinates, and
f.lux reads it once to find sunrise and sunset.

To add the jailbreak to the phone, I first plug the
iPhone into a laptop. It uses a desktop
application to send special instructions over
USB. The process only take a couple of minutes
with a few reboots and some tap-to-continues.

↺ Back to Contents

Smarthome needs hardware that it can fully
control. By default, iPhones do not meet that
need: there’s no third-party apps, no command
line access, no file hosting. If you consider
these features “locked away,” then the jailbreak
lets them run free. The capabilities that are
usually off-limits are no longer restricted,
which means you’ve got some nice, general
purpose hardware to add to a system.

There’s irony in Smarthome using such a
severe-sounding process. “Jailbreak” sounds
like I’m hacking my way into the phone to muck
around with rickety apps — not the case. This
process simply enables an unrestricted, Unix-
like experience that would be impossible with
unmodified iOS.

In any case, jailbreaking is legal in the
United States through 1998’s Digital Millenium
Copyright Act. In 2010, it was clarified that the
Act protects jailbreaking. The U.S. Copyright
Office and the Fifth Circuit Court of Appeals
independently clarified this, identifying it as a
form of fair use with regard to copyright law.

Really, the one slight risk in all this is the
possibility of a new iOS update for the iPhone,
one that would patch up its jailbreak ability.
This is very unlikely to happen: the iPhone 4’s
last update was ten years ago and counting.

Once the jailbreak is added, the iPhone runs
the same, but with one new app. It’s Cydia, an
“app store” that looks at different lists of
community-made apps and system changes,
which are called tweaks. The app (and the
related command line inteface it enables)
makes it possible to install these.

Each of these tweaks offers a slice of
functionality to manage the hardware properly.
One app, for instance, gives the hardware its
custom backlight adjustments. Another tweak
disables the lock screen so that waking the
display jumps right back to the panel app.

Since this stuff changes hardware and system
settings, only tested, trusted apps and tweaks
are used in the system. In reality, this means I
reach for the same list of apps and tweaks that
have worked well for years — some were made
for the very first iPhone in 2009!

Those apps and tweaks are Debian package
files, either added manually or via Cydia. Once
the files are on the hardware, they get installed,
and I reboot. At this point, I’m ready to
configure and calibrate the display.

32 Smarthome Tech Book 33Jailbreak

 Getting a panel ready for
Smarthome takes about a day. All five in the
system are the result of a one-time checklist:
after I physically clean the hardware,  reset it,
and check its battery health, I jailbreak it.

Jailbreaking refers to the act of opening up a
device that has been locked down by its
manufacturer. For the iPhone 4 acting as the
panel hardware, this removes restrictions like
“only use apps from the App Store!” or “no
touching that sensor!” By jailbreaking, the
phone is restored to an opened state in the way
that laptops and Raspberry Pis are. Since the
process is a legal, once-and-done process, it’s
an unfussy way to repurpose hardware in fully
capable ways.

That setup checklist continues after the
jalbreak is added. I change the appearance of
the system to darker settings, I set up cause-
and-effect actions to respond to outages and
brightness changes, and I optimize background
processes from the command line. All of these
changes would otherwise be impossible on a
typical, locked down iPhone.

Jail?!

One-time jailbreak

Calibration

I calibrate the color temperature of the display
and the brightening-and-dimming behavior of
its backlight. It’s applied across the entire
operating system of the hardware, a feature of
unrestricted system access.

The display’s color temperature is adjusted
with f.lux, using its GPS sensor. During setup,
the f.lux app requests access to location
information. The GPS reports coordinates, and
f.lux reads it once to find sunrise and sunset.

To add the jailbreak to the phone, I first plug the
iPhone into a laptop. It uses a desktop
application to send special instructions over
USB. The process only take a couple of minutes
with a few reboots and some tap-to-continues.

↺ Back to Contents

With things calibrated, I move onto the
many settings that make the hardware less
phone-like and more panel-like. This does
involve a couple of stock Settings toggles, but
jailbreak tweaks make up the bulk of changes.

One collection of tweaks turns familiarities of
iOS off, like Notification Center, the lock screen,
and volume level overlays.

Tweaks also improve the experience of the
web apps. They allow them to run in full screen
(without the status bar) and add the ability to
run web apps from the hardware’s storage.

Others offer system management capabilities,
handy during development and now useful for
management over-the-air. This includes
display sharing (VNC) and file sharing (SSH). I
also disable some background processes
(Darwin daemons) Smarthome doesn’t need,
like for Spotlight search and the iTunes Store.

34 Smarthome Tech Book 35Jailbreak

There’s little risk in the kind of tweaks I use
because they hook into Cydia Substrate, a safe
way to modify the actions of the operating
system’s code. With it, tweaks reference the
code they will change, to “redirect” it to
alternate actions. The original code isn’t
changed, it just sits untouched.

Activator is a tweak that carries out actions
when a condition is met or a button is pressed.
The actions are configurable through its app.
Smarthome uses the tweak to respond to
things that would normally be off-limits.

Activator can toggle sensors, lock the screen,
and open apps. It makes automated hardware
maintenance possible, like Smarthome’s
nightly dimming and weekly rebooting.

The no-power panel is a good example of what
Activator can do. In the app, the no-power app
is set to open when the hardware begins
running on battery, and the regular panel app is
set to open when power returns (the phone
resumes charging). With that, Activator
monitors these power events through its
background process, and it automatically
triggers those actions when it catches those
changes. It happens seamlessly on the screen.

On the opposite page is a list of some of
Smarthome’s tweaks. Piece by piece, they
make up the overhauled phone experience.
(Some tweaks in the list are installed but not
used, instead reserved for future use.)

Tweaks

Activator

List of tweaks

IOKit Tools

No Page Bounce

MouseSupport

Maximization

KeyCommands

Homer

HideMe7

file:// for MobileSafari

f.lux

CustomBrightness

Cmdivator

BTC Mouse & Trackpad

Veency

AirSpeaker

SkipLock

Activator

Jay Freeman (saurik)see and use panels over-the-air (VNC)

FilippoBigareturn to button apps when waking display

iolatetrigger custom taps and gestures ()

Jay Freeman (saurik)manage files and processes over-the-air ()

developersBlissprevent rubber-banding in button apps

Matthias Ringwaldadd support for Bluetooth mice and scroll wheels

rud0lf77hide status bar in button panel apps

Ethan Vaughanrun actions from external keyboards

Jay Freeman (saurik)access battery and sensors directly ( )ioreg

stouch

ssh

John Matulaprevent default home button action

CPDigitalDarkroomhide iOS components and decorations

Jay Freeman (saurik)access local web apps

F.lux Software LLCremove blue tint of displays

Harshaddim and brighten screen backlight

joedjrun shell commands from button apps

Matthias Ringwaldconnect to external Bluetooth buttons

Karen / あけみuse panels to play music (AirPlay endpoint)

Ryan Petrichrun custom actions from hardware buttons and sensors

SimulateTouch

ActiSound play interface sounds and clock chimes Milo Darling

OpenSSH

At night, displays are set warmer than they are
during the day. As sunrise and sunset change
throughout the year, the timing changes, too.
The f.lux app handles this in the background.

Backlight settings are similar, using a custom
app on the hardware itself to configure its
sliding brightness scale. The app handles
smooth transitions and reactivity itself.

My part in all of this is to actually set and
review those calibrated values. They need to fit
the room at any brightness level, so it usually
takes me a day. In the morning, I’ll choose
some values for daytime and nighttime. As the
day progresses, I adjust them as needed.

Tweak Purpose Developer

↺ Back to Contents

With things calibrated, I move onto the
many settings that make the hardware less
phone-like and more panel-like. This does
involve a couple of stock Settings toggles, but
jailbreak tweaks make up the bulk of changes.

One collection of tweaks turns familiarities of
iOS off, like Notification Center, the lock screen,
and volume level overlays.

Tweaks also improve the experience of the
web apps. They allow them to run in full screen
(without the status bar) and add the ability to
run web apps from the hardware’s storage.

Others offer system management capabilities,
handy during development and now useful for
management over-the-air. This includes
display sharing (VNC) and file sharing (SSH). I
also disable some background processes
(Darwin daemons) Smarthome doesn’t need,
like for Spotlight search and the iTunes Store.

34 Smarthome Tech Book 35Jailbreak

There’s little risk in the kind of tweaks I use
because they hook into Cydia Substrate, a safe
way to modify the actions of the operating
system’s code. With it, tweaks reference the
code they will change, to “redirect” it to
alternate actions. The original code isn’t
changed, it just sits untouched.

Activator is a tweak that carries out actions
when a condition is met or a button is pressed.
The actions are configurable through its app.
Smarthome uses the tweak to respond to
things that would normally be off-limits.

Activator can toggle sensors, lock the screen,
and open apps. It makes automated hardware
maintenance possible, like Smarthome’s
nightly dimming and weekly rebooting.

The no-power panel is a good example of what
Activator can do. In the app, the no-power app
is set to open when the hardware begins
running on battery, and the regular panel app is
set to open when power returns (the phone
resumes charging). With that, Activator
monitors these power events through its
background process, and it automatically
triggers those actions when it catches those
changes. It happens seamlessly on the screen.

On the opposite page is a list of some of
Smarthome’s tweaks. Piece by piece, they
make up the overhauled phone experience.
(Some tweaks in the list are installed but not
used, instead reserved for future use.)

Tweaks

Activator

List of tweaks

IOKit Tools

No Page Bounce

MouseSupport

Maximization

KeyCommands

Homer

HideMe7

file:// for MobileSafari

f.lux

CustomBrightness

Cmdivator

BTC Mouse & Trackpad

Veency

AirSpeaker

SkipLock

Activator

Jay Freeman (saurik)see and use panels over-the-air (VNC)

FilippoBigareturn to button apps when waking display

iolatetrigger custom taps and gestures ()

Jay Freeman (saurik)manage files and processes over-the-air ()

developersBlissprevent rubber-banding in button apps

Matthias Ringwaldadd support for Bluetooth mice and scroll wheels

rud0lf77hide status bar in button panel apps

Ethan Vaughanrun actions from external keyboards

Jay Freeman (saurik)access battery and sensors directly ( )ioreg

stouch

ssh

John Matulaprevent default home button action

CPDigitalDarkroomhide iOS components and decorations

Jay Freeman (saurik)access local web apps

F.lux Software LLCremove blue tint of displays

Harshaddim and brighten screen backlight

joedjrun shell commands from button apps

Matthias Ringwaldconnect to external Bluetooth buttons

Karen / あけみuse panels to play music (AirPlay endpoint)

Ryan Petrichrun custom actions from hardware buttons and sensors

SimulateTouch

ActiSound play interface sounds and clock chimes Milo Darling

OpenSSH

At night, displays are set warmer than they are
during the day. As sunrise and sunset change
throughout the year, the timing changes, too.
The f.lux app handles this in the background.

Backlight settings are similar, using a custom
app on the hardware itself to configure its
sliding brightness scale. The app handles
smooth transitions and reactivity itself.

My part in all of this is to actually set and
review those calibrated values. They need to fit
the room at any brightness level, so it usually
takes me a day. In the morning, I’ll choose
some values for daytime and nighttime. As the
day progresses, I adjust them as needed.

Tweak Purpose Developer

↺ Back to Contents

3736 Smarthome Tech Book

Design

↺ Back to Contents

3736 Smarthome Tech Book

Design

↺ Back to Contents

38 Smarthome Tech Book 39Design

 Buttons give Smarthome its
interactive powers. The way they look and
work is purposefully designed to suit the
hardware they run on. Buttons, panels, clocks,
and pickers do their best to offer the right
amount of control on the wall.

Smarthome heeds best practices from user
experience design, interior design, and
ergonomics and human factors. While those
buttons are important, they make up one part
of the larger system to consider — each level
of  button, panel app, hardware, room, and
apartment has constraints that Smarthome
must consider.

Just like the hardware and hub, the button
panel apps are designed to be useful for quite a
while. That means the way they run is as
important as the utility that they offer. Buttons
within them are assembled to make the best
use of the GPU. The panels make use of the
hardware and hub, avoiding responsibilities of
managing data and enabling an efficiently
responsive experience.

If Smarthome does its job correctly, using it
should be a boring experience. Harsh, but true:
plastic light switches don’t bring us much joy
and wonder, either. Generally, if a design is
really good, people won’t think much about it. If
it’s a poor one, people will have no choice but
to think about it, and hard.

Calm, reliable,  understandable  —  “boring” is
the glib way to refer to the system’s ultimate
goal, to design a system that controls a home
in an ultra-reliable way. The joyful part of
Smarthome is its ability to make device
capabilities easier to access, not the way its
buttons light up just so. The role of the design,
from buttons to hardware, is to make that joy
happen as quickly and easily as possible.

Smarthome acts as the interface between me
and my lights. I tell the system what to do by
pressing buttons on the wall. Those humble
buttons are forced to work in lots of scenarios,
like dark rooms, direct sunlight, taps from odd
angles, glances from a distance, drive-by taps
in the hallway…

Things start at the display level, where
elements are aligned to the pixel grid. Buttons
and icons are positioned so they show up on
full pixel values. This makes for a very sharp
difference between “on” and “off” pixels. Those
differences combine as the overall contrast of
the display. To handle the previous plethora of
scenarios, that contrast must be very high.

How does something look if it’s positioned on
half of a pixel, anyway? Displays handle this by
anti-aliasing its position, or using averaged
values to get close to the intended, partial
value. For curves and text, this is good: that
blocky effect is made much less noticeable.

For straight, vertical lines, like button or icon
edges, it causes a fringe or blurred effect. The
display is forced to average the whole length of
it and show a blended color along the whole
line. This results in lower contrast (less
difference between the “on” and “off” pixels
now). In dark spaces, that low contrast reduces
overall legibility.

Text, button edges, and arrows are all aligned
like this in the vertical direction. In very dark
and very bright rooms where every scrap of
contrast counts, text and controls are crisp. It
also keeps screens legible at greater distances.

Across the system, buttons look and operate
one way, even as they control different devices
and show different screens.

The kitchen panel, for instance, shows two
types: wide and square. The square buttons
show icons that represent both sides of the
kitchen counter. The wider buttons, the main
lights of the room, show icons for the (higher)
kitchen ball and the (lower) dining table light.

The overall gist of them (design language) is
the same. Both kinds contain one icon, drawn
with thick lines. They show noticeably different
states between “on” and “off.” When you tap
them, both light up very brightly.

Intent

Pixels

Buttons

↺ Back to Contents

38 Smarthome Tech Book 39Design

 Buttons give Smarthome its
interactive powers. The way they look and
work is purposefully designed to suit the
hardware they run on. Buttons, panels, clocks,
and pickers do their best to offer the right
amount of control on the wall.

Smarthome heeds best practices from user
experience design, interior design, and
ergonomics and human factors. While those
buttons are important, they make up one part
of the larger system to consider — each level
of  button, panel app, hardware, room, and
apartment has constraints that Smarthome
must consider.

Just like the hardware and hub, the button
panel apps are designed to be useful for quite a
while. That means the way they run is as
important as the utility that they offer. Buttons
within them are assembled to make the best
use of the GPU. The panels make use of the
hardware and hub, avoiding responsibilities of
managing data and enabling an efficiently
responsive experience.

If Smarthome does its job correctly, using it
should be a boring experience. Harsh, but true:
plastic light switches don’t bring us much joy
and wonder, either. Generally, if a design is
really good, people won’t think much about it. If
it’s a poor one, people will have no choice but
to think about it, and hard.

Calm, reliable,  understandable  —  “boring” is
the glib way to refer to the system’s ultimate
goal, to design a system that controls a home
in an ultra-reliable way. The joyful part of
Smarthome is its ability to make device
capabilities easier to access, not the way its
buttons light up just so. The role of the design,
from buttons to hardware, is to make that joy
happen as quickly and easily as possible.

Smarthome acts as the interface between me
and my lights. I tell the system what to do by
pressing buttons on the wall. Those humble
buttons are forced to work in lots of scenarios,
like dark rooms, direct sunlight, taps from odd
angles, glances from a distance, drive-by taps
in the hallway…

Things start at the display level, where
elements are aligned to the pixel grid. Buttons
and icons are positioned so they show up on
full pixel values. This makes for a very sharp
difference between “on” and “off” pixels. Those
differences combine as the overall contrast of
the display. To handle the previous plethora of
scenarios, that contrast must be very high.

How does something look if it’s positioned on
half of a pixel, anyway? Displays handle this by
anti-aliasing its position, or using averaged
values to get close to the intended, partial
value. For curves and text, this is good: that
blocky effect is made much less noticeable.

For straight, vertical lines, like button or icon
edges, it causes a fringe or blurred effect. The
display is forced to average the whole length of
it and show a blended color along the whole
line. This results in lower contrast (less
difference between the “on” and “off” pixels
now). In dark spaces, that low contrast reduces
overall legibility.

Text, button edges, and arrows are all aligned
like this in the vertical direction. In very dark
and very bright rooms where every scrap of
contrast counts, text and controls are crisp. It
also keeps screens legible at greater distances.

Across the system, buttons look and operate
one way, even as they control different devices
and show different screens.

The kitchen panel, for instance, shows two
types: wide and square. The square buttons
show icons that represent both sides of the
kitchen counter. The wider buttons, the main
lights of the room, show icons for the (higher)
kitchen ball and the (lower) dining table light.

The overall gist of them (design language) is
the same. Both kinds contain one icon, drawn
with thick lines. They show noticeably different
states between “on” and “off.” When you tap
them, both light up very brightly.

Intent

Pixels

Buttons

↺ Back to Contents

40 Smarthome Tech Book 41Design

A home has to be workable for it to be warm.
Button panels are as thorough as they are so
that they work clearly and are recoverable
from accidental taps when they happen.

Understanding how to accommodate these
errors, and even redesigning panels to avoid
them, is all part of the user experience
research and design process. For Smarthome,
it’s lightweight: it simply serves as a way of
thinking so that I actively consider new ideas or
reasoning behind accidental taps.

The function of the temperature button
changed early on as I built Smarthome.
Originally, the button toggled between color
and daylight light when the bulb was on, and
do nothing when off. The panel is right next to
the medicine cabinet, so my original intent was
to avoid accidental taps when opening it. In
reality, I found myself tapping it wanting bright
light. I was trying to switch away from its last
setting before off, which I remembered was
darker color. Giving those mistaps some UX
thought, that button now supports that function
and acts as a shortcut to bright daylight light.

Even for the honest mistake, like flipping the
wrong switch, it’s a simple oop-tap-tap. The
hub supports my quick correction with fast
responses to button taps (around 10 to 50 ms).

Beyond the buttons, the UX process influenced
how much time I gave to smoothing out screen
animations and button transitions: quite a bit.
Originally, the apps were just jumpy enough to
make me pause. Optimizing it was a tech task
(keep layers on GPU, optimize SVG drawing,
cleverly use jailbreak features) that improved
the overall experience.

Keeping time front and center keeps me going.
As a fella who manages his time blindness,
having plenty of clocks is one way I’m able to
successfully keep track of my tasks.

Clocks are an additional tool of Smarthome, to
make more use of the well-tuned screens
affixed to the walls. The bathroom and
bedroom both offer a clock, fitting alongside
the other buttons. It, too, is a button, bringing
up a large type clock. As an additional tool,
tapping and holding the clock button shows a
few types to choose, like a 24-hour clock (and
an Easter egg) when my sister visits. In the
bedroom, the large type clock is tinted a deep
red to serve radio clock realness.

There is also an additional tool found when
pressing and holding a wide button’s middle
icon, the hue selector. Mentioned earlier, this
shows Smarthome’s system color presets that
it can apply to the given light. It also offers a
temperature switch and a random color
selector. When I’ve got the right hue, there are
full-size dimmer buttons to set its brightness.

In the foyer, the panel acts as a scene selector
instead of individual control. The scenes, set in
Home Assistant, control about a dozen bulbs
with five different scenes. There is also a
dedicated “off” button for heading out the door.

In the booth (a closet that operates as my
recording booth), a clapperboard button opens
up recording tools, with an A440 button for
pitch and a marker button to announce the
time. (There’s also a metronome button, but it’s
one of those saved-for-later features that I
discuss in the Product section.)

Smarthome has sufficient contrast and large
tap areas according to the WCAG’s guidelines.
Those guidelines dictate how web content
should behave and be structured.

But Smarthome isn’t really a webpage, and
some guidelines, like keyboard access, are
irrelevant to the system. At the same time, new
guidelines come into play to support the
physical design needs of the system, such as
the system’s ergonomics and human factors.

For example, the bathroom’s panel has purple
buttons so that they appear brighter with the
room’s purple paint. Beyond aesthetics, the
purple light from the buttons is reflected more
than other colors, which helps legibility in low
light. They’re shaded a full-toned purple (not
dark, not light) to keep buttons bright enough
for use at night — enough so I can aim a tap. As
the web guidelines are written for general use,
and these buttons are a hardware-specific
specialty, their color contrast can be tuned
lower without adversely affecting their utility.

Physically, panels are affixed at the same
height from the ground as other wall switches
in the apartment. The exception to this is the
bedroom panel, which is at a lower height so
that it can be workable from bed.

I admit, there’s a lot of refinement on screen
brightness, button contrast, the speed they
operate, the placement of them all — this tight
fit is the reason I’m not “operating” Smarthome
but truly using it. It sees my elbow quite a bit,
and I use the large print clock way more than I
thought I would. The panels blend into the
apartment; they’re fast and reliable enough to
blend into my routine.

On the bathroom’s button panel, there are
extra buttons that serve as dimmer controls
and a temperature switch between soft warm
and bright daylight light. These additional
buttons are here to make full use of the single
lamp found in the bathroom.

Tapping one of the full-size dimmer buttons
dims and brightens the light; holding them
does that more gradually. If the light is off,
tapping or holding the “plus” button gradually
fades in the light, starting at its lowest setting.
Also when off, the temperature button turns on
the lamp to its bright daylight light setting.
(The main action of turning on and off a light is
still most important, so it remains the widest
button at the top.)

Those features are clearly presented on the
bathroom panel, and they exist on every panel
in the apartment in the form of tap-and-hold
gestures. Dimming, hue selection, and extra
tools are controlled as additional capabilities.

Going back to the dining table light, that wide
button has three regions. Tapping and holding
to the left of the icon dims its light; tapping and
holding to the right of the icon brightens it, or
fades it in from off. Tapping and holding the
icon itself switches to the hue picker for that
light, offering controls similar in function to the
temperature button.

This ends up giving a button more like four
quick capabilities for the day-to-day person
using it. But they are just that: additional, not
for getting in the way of ons and offs.

The similar look and interactivity of the buttons
reinforces the fact that they function the same.
Wide buttons all dim in the same way and with
the same large tap areas, for example.

Clocks and tools Continuous UX Blending

↺ Back to Contents

40 Smarthome Tech Book 41Design

A home has to be workable for it to be warm.
Button panels are as thorough as they are so
that they work clearly and are recoverable
from accidental taps when they happen.

Understanding how to accommodate these
errors, and even redesigning panels to avoid
them, is all part of the user experience
research and design process. For Smarthome,
it’s lightweight: it simply serves as a way of
thinking so that I actively consider new ideas or
reasoning behind accidental taps.

The function of the temperature button
changed early on as I built Smarthome.
Originally, the button toggled between color
and daylight light when the bulb was on, and
do nothing when off. The panel is right next to
the medicine cabinet, so my original intent was
to avoid accidental taps when opening it. In
reality, I found myself tapping it wanting bright
light. I was trying to switch away from its last
setting before off, which I remembered was
darker color. Giving those mistaps some UX
thought, that button now supports that function
and acts as a shortcut to bright daylight light.

Even for the honest mistake, like flipping the
wrong switch, it’s a simple oop-tap-tap. The
hub supports my quick correction with fast
responses to button taps (around 10 to 50 ms).

Beyond the buttons, the UX process influenced
how much time I gave to smoothing out screen
animations and button transitions: quite a bit.
Originally, the apps were just jumpy enough to
make me pause. Optimizing it was a tech task
(keep layers on GPU, optimize SVG drawing,
cleverly use jailbreak features) that improved
the overall experience.

Keeping time front and center keeps me going.
As a fella who manages his time blindness,
having plenty of clocks is one way I’m able to
successfully keep track of my tasks.

Clocks are an additional tool of Smarthome, to
make more use of the well-tuned screens
affixed to the walls. The bathroom and
bedroom both offer a clock, fitting alongside
the other buttons. It, too, is a button, bringing
up a large type clock. As an additional tool,
tapping and holding the clock button shows a
few types to choose, like a 24-hour clock (and
an Easter egg) when my sister visits. In the
bedroom, the large type clock is tinted a deep
red to serve radio clock realness.

There is also an additional tool found when
pressing and holding a wide button’s middle
icon, the hue selector. Mentioned earlier, this
shows Smarthome’s system color presets that
it can apply to the given light. It also offers a
temperature switch and a random color
selector. When I’ve got the right hue, there are
full-size dimmer buttons to set its brightness.

In the foyer, the panel acts as a scene selector
instead of individual control. The scenes, set in
Home Assistant, control about a dozen bulbs
with five different scenes. There is also a
dedicated “off” button for heading out the door.

In the booth (a closet that operates as my
recording booth), a clapperboard button opens
up recording tools, with an A440 button for
pitch and a marker button to announce the
time. (There’s also a metronome button, but it’s
one of those saved-for-later features that I
discuss in the Product section.)

Smarthome has sufficient contrast and large
tap areas according to the WCAG’s guidelines.
Those guidelines dictate how web content
should behave and be structured.

But Smarthome isn’t really a webpage, and
some guidelines, like keyboard access, are
irrelevant to the system. At the same time, new
guidelines come into play to support the
physical design needs of the system, such as
the system’s ergonomics and human factors.

For example, the bathroom’s panel has purple
buttons so that they appear brighter with the
room’s purple paint. Beyond aesthetics, the
purple light from the buttons is reflected more
than other colors, which helps legibility in low
light. They’re shaded a full-toned purple (not
dark, not light) to keep buttons bright enough
for use at night — enough so I can aim a tap. As
the web guidelines are written for general use,
and these buttons are a hardware-specific
specialty, their color contrast can be tuned
lower without adversely affecting their utility.

Physically, panels are affixed at the same
height from the ground as other wall switches
in the apartment. The exception to this is the
bedroom panel, which is at a lower height so
that it can be workable from bed.

I admit, there’s a lot of refinement on screen
brightness, button contrast, the speed they
operate, the placement of them all — this tight
fit is the reason I’m not “operating” Smarthome
but truly using it. It sees my elbow quite a bit,
and I use the large print clock way more than I
thought I would. The panels blend into the
apartment; they’re fast and reliable enough to
blend into my routine.

On the bathroom’s button panel, there are
extra buttons that serve as dimmer controls
and a temperature switch between soft warm
and bright daylight light. These additional
buttons are here to make full use of the single
lamp found in the bathroom.

Tapping one of the full-size dimmer buttons
dims and brightens the light; holding them
does that more gradually. If the light is off,
tapping or holding the “plus” button gradually
fades in the light, starting at its lowest setting.
Also when off, the temperature button turns on
the lamp to its bright daylight light setting.
(The main action of turning on and off a light is
still most important, so it remains the widest
button at the top.)

Those features are clearly presented on the
bathroom panel, and they exist on every panel
in the apartment in the form of tap-and-hold
gestures. Dimming, hue selection, and extra
tools are controlled as additional capabilities.

Going back to the dining table light, that wide
button has three regions. Tapping and holding
to the left of the icon dims its light; tapping and
holding to the right of the icon brightens it, or
fades it in from off. Tapping and holding the
icon itself switches to the hue picker for that
light, offering controls similar in function to the
temperature button.

This ends up giving a button more like four
quick capabilities for the day-to-day person
using it. But they are just that: additional, not
for getting in the way of ons and offs.

The similar look and interactivity of the buttons
reinforces the fact that they function the same.
Wide buttons all dim in the same way and with
the same large tap areas, for example.

Clocks and tools Continuous UX Blending

↺ Back to Contents

42 Smarthome Tech Book 43Design

Buttons provide the same statuses
and feedback across the system.

Tap and hold to the left
of the icon to gradually
dim the light.

Tap and hold the icon to open
the hue selector, which controls
the light color and brightness.

Tap and hold to the right
of the icon to gradually
brighten the light.

brightness

hue

controlled light

unavailable off

on active

Behavior States

As brightness increases, the button panel brightens from dark gray
to the selected hue. The hue indicator remains steady at all brightnesses.

Tap anywhere
on the button to
toggle the light.

↺ Back to Contents

42 Smarthome Tech Book 43Design

Buttons provide the same statuses
and feedback across the system.

Tap and hold to the left
of the icon to gradually
dim the light.

Tap and hold the icon to open
the hue selector, which controls
the light color and brightness.

Tap and hold to the right
of the icon to gradually
brighten the light.

brightness

hue

controlled light

unavailable off

on active

Behavior States

As brightness increases, the button panel brightens from dark gray
to the selected hue. The hue indicator remains steady at all brightnesses.

Tap anywhere
on the button to
toggle the light.

↺ Back to Contents

44 Smarthome Tech Book 45Design

Transitions

Legibility

34 feet 16′ 12′

15′ 14′ 10′

 8′ 7′ 4′

I measured these distances on a sunny day with screen
brightness at its maximum setting, at three angles. In reality,
these are more measurements of my own visual acuity; a full,
proper test design would include participants, random values,
and real-world tests — like a road sign’s legibility might be.

A quick fade happens when switching between screens.
These slow-motion stills come from early speed tests.

Type of content 0°at 40° 80°

large type clock

shapes

small clock button

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Top of display

0°
40°

80°

0.97 in.
2.46 cm

0.67 in.
1.70 cm

0.08 in.
0.20 cm2.1 : 1 scale

2.1 : 1 scale

2.1 : 1 scale
Square button

Wide button

Selector button

0.97 in.
2.46 cm

0.32 in.
0.81 cm

0.97 in.
2.46 cm

0.97 in.
2.46 cm

0.59 in.
1.50 cm

1.98 in.
5.03 cm

0.18 in. ⌀
0.46 cm ⌀
smoothed

0.08 in.
0.20 cm

Dimensions

↺ Back to Contents

44 Smarthome Tech Book 45Design

Transitions

Legibility

34 feet 16′ 12′

15′ 14′ 10′

 8′ 7′ 4′

I measured these distances on a sunny day with screen
brightness at its maximum setting, at three angles. In reality,
these are more measurements of my own visual acuity; a full,
proper test design would include participants, random values,
and real-world tests — like a road sign’s legibility might be.

A quick fade happens when switching between screens.
These slow-motion stills come from early speed tests.

Type of content 0°at 40° 80°

large type clock

shapes

small clock button

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Top of display

0°
40°

80°

0.97 in.
2.46 cm

0.67 in.
1.70 cm

0.08 in.
0.20 cm2.1 : 1 scale

2.1 : 1 scale

2.1 : 1 scale
Square button

Wide button

Selector button

0.97 in.
2.46 cm

0.32 in.
0.81 cm

0.97 in.
2.46 cm

0.97 in.
2.46 cm

0.59 in.
1.50 cm

1.98 in.
5.03 cm

0.18 in. ⌀
0.46 cm ⌀
smoothed

0.08 in.
0.20 cm

Dimensions

↺ Back to Contents

46 Smarthome Tech Book 47Design

Panels

Bedroom, lights off Bedroom, lights on

Kitchen and dining table

Bathroom Recording booth

Foyer and living room Whole-home controls

buttons toggle
and dim normally

steady fan mode

Click the
hardware home button
to access this panel.

clocks and hue
selector limited

cool mode

bright light only,
no colors or tools

low sleep mode

desk light
off

off

off

desk light

kitchen ball

bedside light bedside light

dining table light

large-type clock large-type clock

countertop light

neon neon

light under cupboards

ceiling lamp spotlight

dim (or hold to
fade out gradually)

brighten (or hold to
fade in gradually)

piano light

large-type clock

back to
button panel

turn off all
apartment lights

recording tools

living room and
foyer lights off

party scene

dusk scene

toggle between
daylight light
and full color

salt lamp

low red scene

piano scene

sunny scene

medium yellow

medium purple

on

medium red

medium yellow

off

off

medium daylight light off

on

medium red

↺ Back to Contents

46 Smarthome Tech Book 47Design

Panels

Bedroom, lights off Bedroom, lights on

Kitchen and dining table

Bathroom Recording booth

Foyer and living room Whole-home controls

buttons toggle
and dim normally

steady fan mode

Click the
hardware home button
to access this panel.

clocks and hue
selector limited

cool mode

bright light only,
no colors or tools

low sleep mode

desk light
off

off

off

desk light

kitchen ball

bedside light bedside light

dining table light

large-type clock large-type clock

countertop light

neon neon

light under cupboards

ceiling lamp spotlight

dim (or hold to
fade out gradually)

brighten (or hold to
fade in gradually)

piano light

large-type clock

back to
button panel

turn off all
apartment lights

recording tools

living room and
foyer lights off

party scene

dusk scene

toggle between
daylight light
and full color

salt lamp

low red scene

piano scene

sunny scene

medium yellow

medium purple

on

medium red

medium yellow

off

off

medium daylight light off

on

medium red

↺ Back to Contents

48 Smarthome Tech Book 49Design

Additional toolsClocks

Sets the color and brightness
of a light, or set a random hue

Sets the fan and thermostat,
shows mode and temperature

Clock, markers, and tempo
(shaded darker for the booth)

Non-clock time keeping Clock and light for safety Backlight-maxed screen light

Hue selector Air conditioner Recording tools

Wall calendar No-power panel Light, no-power panel

Appears when tapping
and holding a clock button.

Default clock that shows
when tapping a clock button

Same layout, but tinted
very dark red for low light

Clock selectorLarge-type clock Large-type clock, bedroom

Wide clock with date 24-hour clock with date 24-hour clock (Easter egg)

↺ Back to Contents

48 Smarthome Tech Book 49Design

Additional toolsClocks

Sets the color and brightness
of a light, or set a random hue

Sets the fan and thermostat,
shows mode and temperature

Clock, markers, and tempo
(shaded darker for the booth)

Non-clock time keeping Clock and light for safety Backlight-maxed screen light

Hue selector Air conditioner Recording tools

Wall calendar No-power panel Light, no-power panel

Appears when tapping
and holding a clock button.

Default clock that shows
when tapping a clock button

Same layout, but tinted
very dark red for low light

Clock selectorLarge-type clock Large-type clock, bedroom

Wide clock with date 24-hour clock with date 24-hour clock (Easter egg)

↺ Back to Contents

5150 Smarthome Tech Book

Product

↺ Back to Contents

5150 Smarthome Tech Book

Product

↺ Back to Contents

Smarthome brings up many questions about
usability and utility, all with little jobs of varying
importance and difficulty. I think of Smarthome
as a product, so that I stay focused on priorities.

What makes something a priority? One way to
answer that is through user stories. They’re
goals that take the form of single sentences,
and they keep the person using a product in
focus. They help each iteration of the plan-
build-test cycle, whether that’s at the outset of
a new project or in the middle of it.

Smarthome has an overarching one: “as a
renter, I want to use my smart lights like they
were any other light in the place so I can put
my phone away.” This broad statement breaks
down into manageable chunks of work. As a
matter of fact, the goals at the start of this book
were from this story.

Stories are handy in a personal project and
downright indispensable in a large, distributed
team. They are necessary for engineering and
design teams to stay aligned  —  not just to
work, but a broader goal. They also serve as
one indicator of a task’s priority, determining
what makes most sense to work on next.

Comparisons, or competitive analyses, also
help set a project’s priority. They reveal what
products do well, and what mine should avoid.
These might include some binary comparisons
(“I want mine easier than theirs!”), but the true
value of them lies in discerning smaller
differences and strategic trade-offs.

During Smarthome’s development, I took a
look at other systems for sale, each from a
different product category: a remote, a panel, a
voice assistant, and a couple of switches. In a
big matrix, I then looked at what each did well
and what things Smarthome could try to
improve. There were many, and an excerpt of
that matrix is on the following pages. I’ll touch
on two that ended up affecting the product.

One opportunity came in the size of controls,
specifically that they needed to be huge.
Brilliant, a smart home touch panel, has large
plastic sliders on one side of its panel, and they
act as dimmer controls. However, its touch
buttons are puny. The simpler TP-Link switch,
by comparison, had a much larger button, and
videos showed people using this in a quicker
fashion than the precise taps that Brilliant’s
product required.

Another was the remote control form factor,
which ended up being partially included. In my
initial thinking, I really, really wanted to include
a remote version of Smarthome in its first
version —  note the lack of a user story here.
Remotes such as Control4’s Neeo and the
discont inued Logitech Harmony were
i n t r i g u i n g b e c a u s e r e v i e w s o f t h e m
commended them on its physical feel. Their
interfaces were busier than their switch
counterparts  —  and thus an opportunity for
S m a r t h o m e t o i m p r o v e i t . Fr o m t h e
competitive analysis alone, a Smarthome
remote sounded like a promising option.

Of these two examples, only the button size
directly affected Smarthome  (Smarthome’s
button size is closer to TP-Link’s). Why weren’t
both ideas implemented?

52 Smarthome Tech Book 53Product

 Underneath every product
lies a riddle: build something thoughtfully
without overthinking it. Give a product too little
thought, and it runs the risk of becoming
unhelpful or breaking quickly. But give it too
much thought, and an idea runs the risk of
being a nice project plan and nothing else.

Smarthome answers that riddle with a
continuous, iterative process to plan, build, and
test work. Used informally since the start of the
project, it’s how I try new ideas and debug and
refine existing ones. It’s a continuous cycle:
when I test work, I also plan out further work on
it. Or, I find a good stopping point, consider
how to add it to the roadmap, and I move on.

That roadmap holds ideas for Smarthome that I
can work on —  not now, but later. It contains
experimental ideas and feature refinements
alike. It’s ordered by priority, estimating each
idea’s cost, time, and benefit. When I’m ready
to load up my work queue, I take the most
promising ideas and break them down into
tasks that fit the plan-build-test cycle.

Stories

Comparisons

↺ Back to Contents

Smarthome brings up many questions about
usability and utility, all with little jobs of varying
importance and difficulty. I think of Smarthome
as a product, so that I stay focused on priorities.

What makes something a priority? One way to
answer that is through user stories. They’re
goals that take the form of single sentences,
and they keep the person using a product in
focus. They help each iteration of the plan-
build-test cycle, whether that’s at the outset of
a new project or in the middle of it.

Smarthome has an overarching one: “as a
renter, I want to use my smart lights like they
were any other light in the place so I can put
my phone away.” This broad statement breaks
down into manageable chunks of work. As a
matter of fact, the goals at the start of this book
were from this story.

Stories are handy in a personal project and
downright indispensable in a large, distributed
team. They are necessary for engineering and
design teams to stay aligned  —  not just to
work, but a broader goal. They also serve as
one indicator of a task’s priority, determining
what makes most sense to work on next.

Comparisons, or competitive analyses, also
help set a project’s priority. They reveal what
products do well, and what mine should avoid.
These might include some binary comparisons
(“I want mine easier than theirs!”), but the true
value of them lies in discerning smaller
differences and strategic trade-offs.

During Smarthome’s development, I took a
look at other systems for sale, each from a
different product category: a remote, a panel, a
voice assistant, and a couple of switches. In a
big matrix, I then looked at what each did well
and what things Smarthome could try to
improve. There were many, and an excerpt of
that matrix is on the following pages. I’ll touch
on two that ended up affecting the product.

One opportunity came in the size of controls,
specifically that they needed to be huge.
Brilliant, a smart home touch panel, has large
plastic sliders on one side of its panel, and they
act as dimmer controls. However, its touch
buttons are puny. The simpler TP-Link switch,
by comparison, had a much larger button, and
videos showed people using this in a quicker
fashion than the precise taps that Brilliant’s
product required.

Another was the remote control form factor,
which ended up being partially included. In my
initial thinking, I really, really wanted to include
a remote version of Smarthome in its first
version —  note the lack of a user story here.
Remotes such as Control4’s Neeo and the
discont inued Logitech Harmony were
i n t r i g u i n g b e c a u s e r e v i e w s o f t h e m
commended them on its physical feel. Their
interfaces were busier than their switch
counterparts  —  and thus an opportunity for
S m a r t h o m e t o i m p r o v e i t . Fr o m t h e
competitive analysis alone, a Smarthome
remote sounded like a promising option.

Of these two examples, only the button size
directly affected Smarthome  (Smarthome’s
button size is closer to TP-Link’s). Why weren’t
both ideas implemented?

52 Smarthome Tech Book 53Product

 Underneath every product
lies a riddle: build something thoughtfully
without overthinking it. Give a product too little
thought, and it runs the risk of becoming
unhelpful or breaking quickly. But give it too
much thought, and an idea runs the risk of
being a nice project plan and nothing else.

Smarthome answers that riddle with a
continuous, iterative process to plan, build, and
test work. Used informally since the start of the
project, it’s how I try new ideas and debug and
refine existing ones. It’s a continuous cycle:
when I test work, I also plan out further work on
it. Or, I find a good stopping point, consider
how to add it to the roadmap, and I move on.

That roadmap holds ideas for Smarthome that I
can work on —  not now, but later. It contains
experimental ideas and feature refinements
alike. It’s ordered by priority, estimating each
idea’s cost, time, and benefit. When I’m ready
to load up my work queue, I take the most
promising ideas and break them down into
tasks that fit the plan-build-test cycle.

Stories

Comparisons

↺ Back to Contents

Here’s a user story: as John, I want to include
low-cost components in the system so that I
can feasibly use Smarthome in every room.

The iPhone 4 in its jailbroken state supports
this very well. Besides the one that surivived
college, I bought the other panels from sellers
on eBay for around $25 per panel. (A nice little
touch panel for the price of an Olive Garden
dinner?!)

Those panels benefit from the free, open-
source capabilities and extensibility offered by
Home Assistant. The Raspberry Pi that things
run on has chugged along for a while, serving
other projects and now Smarthome. Back
when I bought it, it cost $50.

That’s $75 for the hub and one panel, or a
rough total of $200 for the hub, five panels, one
dev panel, and assorted extras like chargers.

The design and setup of Smarthome cost me
t i m e , n o t m o n e y. T h e r e s e a r c h a n d
foundational part of this is complete (adding
display status to the hub, optimizing web apps,
finalizing the set of hardware tweaks). The time
spent choosing which buttons to show, putting
them on a panel, and launching the app is
equatable to the time spent installing and
configuring other smart systems.

Finally, there are the devices that Smarthome
controls. Averaging around $8 each, the
collection has grown to over 20 devices over
the last five years. Add in the air conditioner,
and the cost of devices in my apartment adds
up to about $340.

Overall, Smarthome adds button panels in
my apartment and controls over 20 devices
across it for under $600.

54 Smarthome Tech Book 55Product

Though the comparison indicated that the
remote could be a possible feature of the
system, user stories said otherwise. Where
stories that supported buttons were easy
(“buttons that are easy to tap”), the most
interesting ones for the remote focused on its
whole-home control, not the remote itself. In
this case, the competitive analysis had an
indirect effect, motivating Smarthome’s home
view when the physical home button is clicked.

Still, there are a couple of ideas that would
likely benefit from a remote control form factor,
like A/C control or controlling speakers from a
wall panel. However, making a version of
Smarthome work well in a different form factor
isn’t quick, and makes for a lot of work to
support only two quick ideas.

That’s why those things currently live on
Smarthome’s roadmap. It is the list of things
that I’d like to add to Smarthome at a later
point. The list is sorted by priority, taking into
account a task’s feasibility, its urgency, my
time, and similar factors. The list also has
estimated timeframes on it, or rough guesses
as to when I can get to something.

For teams, this can be separated into a planned
“roadmap” and a “parking lot” for ideas not yet
scheduled. Its estimates are more precise,
using time estimates or agile sprint points.
Mine is simpler to suit a one-person project.

Smarthome gets any product-style roadmap at
all because I want to juggle the time I spend on
it with non-personal-project things. Having a
list also makes the likelihood of a good, sudden
shower thought a little greater. A portion of this
list is on the opposite page.

Roadmap

Costs
smooth values between different
kinds of LEDs in a single bulb

I’d like to create a dimming system to smoothly brighten
from dark RGB colors to super-bright white colors, giving
me a wider range of perceived brightnesses.

summer 2025

add display status support for
room and home scenes

I’d like to automatically handle lights that I forgot to power
on before choosing a scene, using its intended state from
the display status mechanism. (Right now, I have to go
flick a bulb’s power on and reapply the scene.)

summer 2025

refactor separate gesture libraries
into one unified system

The libraries that enable instant app taps and long taps
are separate libraries, and the hacks that allow both to
coexist are finicky. Simplifying this will make gesture
support easier to include.

fall 2025

add remote control for
air conditioner and music

For system-wide light control, I’m likely to be at a panel.
For non-light actions, like air conditioner and music
control, I’d find it useful to set these away from the wall.

summer 2025

create a build process for exporting
SVG art to button panel apps

Though the panels are easy enough to assemble, it’s a
manual markup job right now. I’d like to eliminate some of
the clean-up reptition with some improved jobs.

fall 2025

add timer to no-power mode I have a gas stove, so I could use a timer to help me cook
when the power is out.

2026

add screensavers Panels are static, and image retention does occur. I’d like
to fold in the intent of the burn-in tool to the panel apps
themselves, so that they can exercise pixels without
needing to be interrupted to control lights.

2026

add overlay system to panel apps Panels use a page-based system for controls. Overlays
would be useful for emergency messages and quick
controls, especially once gesture support is improved.

2026

show feedback for physical controls Once overlays are supported, I’d like to show quick
displays (not unlike the volume overlay that appears
when adjusting your iPhone).

—

spring 2025display current weather I’d benefit from seeing the temperature, “feels like” temp,
and forecast when I’m at the front door, about to head out.

—The hardware is able to detect when some system
process has become unresponsive, and I’d like to figure
out what conditions should trigger an automated reset.

improve power and
process management

Roadmap item Remarks Timeframe

npm

↺ Back to Contents

Here’s a user story: as John, I want to include
low-cost components in the system so that I
can feasibly use Smarthome in every room.

The iPhone 4 in its jailbroken state supports
this very well. Besides the one that surivived
college, I bought the other panels from sellers
on eBay for around $25 per panel. (A nice little
touch panel for the price of an Olive Garden
dinner?!)

Those panels benefit from the free, open-
source capabilities and extensibility offered by
Home Assistant. The Raspberry Pi that things
run on has chugged along for a while, serving
other projects and now Smarthome. Back
when I bought it, it cost $50.

That’s $75 for the hub and one panel, or a
rough total of $200 for the hub, five panels, one
dev panel, and assorted extras like chargers.

The design and setup of Smarthome cost me
t i m e , n o t m o n e y. T h e r e s e a r c h a n d
foundational part of this is complete (adding
display status to the hub, optimizing web apps,
finalizing the set of hardware tweaks). The time
spent choosing which buttons to show, putting
them on a panel, and launching the app is
equatable to the time spent installing and
configuring other smart systems.

Finally, there are the devices that Smarthome
controls. Averaging around $8 each, the
collection has grown to over 20 devices over
the last five years. Add in the air conditioner,
and the cost of devices in my apartment adds
up to about $340.

Overall, Smarthome adds button panels in
my apartment and controls over 20 devices
across it for under $600.

54 Smarthome Tech Book 55Product

Though the comparison indicated that the
remote could be a possible feature of the
system, user stories said otherwise. Where
stories that supported buttons were easy
(“buttons that are easy to tap”), the most
interesting ones for the remote focused on its
whole-home control, not the remote itself. In
this case, the competitive analysis had an
indirect effect, motivating Smarthome’s home
view when the physical home button is clicked.

Still, there are a couple of ideas that would
likely benefit from a remote control form factor,
like A/C control or controlling speakers from a
wall panel. However, making a version of
Smarthome work well in a different form factor
isn’t quick, and makes for a lot of work to
support only two quick ideas.

That’s why those things currently live on
Smarthome’s roadmap. It is the list of things
that I’d like to add to Smarthome at a later
point. The list is sorted by priority, taking into
account a task’s feasibility, its urgency, my
time, and similar factors. The list also has
estimated timeframes on it, or rough guesses
as to when I can get to something.

For teams, this can be separated into a planned
“roadmap” and a “parking lot” for ideas not yet
scheduled. Its estimates are more precise,
using time estimates or agile sprint points.
Mine is simpler to suit a one-person project.

Smarthome gets any product-style roadmap at
all because I want to juggle the time I spend on
it with non-personal-project things. Having a
list also makes the likelihood of a good, sudden
shower thought a little greater. A portion of this
list is on the opposite page.

Roadmap

Costs
smooth values between different
kinds of LEDs in a single bulb

I’d like to create a dimming system to smoothly brighten
from dark RGB colors to super-bright white colors, giving
me a wider range of perceived brightnesses.

summer 2025

add display status support for
room and home scenes

I’d like to automatically handle lights that I forgot to power
on before choosing a scene, using its intended state from
the display status mechanism. (Right now, I have to go
flick a bulb’s power on and reapply the scene.)

summer 2025

refactor separate gesture libraries
into one unified system

The libraries that enable instant app taps and long taps
are separate libraries, and the hacks that allow both to
coexist are finicky. Simplifying this will make gesture
support easier to include.

fall 2025

add remote control for
air conditioner and music

For system-wide light control, I’m likely to be at a panel.
For non-light actions, like air conditioner and music
control, I’d find it useful to set these away from the wall.

summer 2025

create a build process for exporting
SVG art to button panel apps

Though the panels are easy enough to assemble, it’s a
manual markup job right now. I’d like to eliminate some of
the clean-up reptition with some improved jobs.

fall 2025

add timer to no-power mode I have a gas stove, so I could use a timer to help me cook
when the power is out.

2026

add screensavers Panels are static, and image retention does occur. I’d like
to fold in the intent of the burn-in tool to the panel apps
themselves, so that they can exercise pixels without
needing to be interrupted to control lights.

2026

add overlay system to panel apps Panels use a page-based system for controls. Overlays
would be useful for emergency messages and quick
controls, especially once gesture support is improved.

2026

show feedback for physical controls Once overlays are supported, I’d like to show quick
displays (not unlike the volume overlay that appears
when adjusting your iPhone).

—

spring 2025display current weather I’d benefit from seeing the temperature, “feels like” temp,
and forecast when I’m at the front door, about to head out.

—The hardware is able to detect when some system
process has become unresponsive, and I’d like to figure
out what conditions should trigger an automated reset.

improve power and
process management

Roadmap item Remarks Timeframe

npm

↺ Back to Contents

56 Smarthome Tech Book 57Product

form factor of controls touch screen on wall touch screen on wall
with 2 grooves

smartphone apppaddle switch on wall remote control with
Android touch screen

smartphone app, wall
remote-switch hybrid

name and style of hub or protocol open, Home Assistant not a hub, integratable proprietary, WiZproprietary, Hue (Zigbee) open, Matter not a hub, integratable

LCD pixel size (width × height @ pixel density) 640 × 960 @ 326 ppi 720 × 1280 @ 259 ppi —— — 480 × 1170 @ 280 ppi

LCD physical size (width × height / diagonal) 2.0″ × 2.9″ / 3.5″↖↘ 2.8″ × 4.9″ / 5.6″↖↘ —— — 1.7″ × 4.2″ / 4.5″↖↘

number of actions from main view 6 (or 12 with gestures) 4 (or 6 with gestures?) 8 1 depends on smartphone around 8 to 12

size of smallest button main: 1.0″ W × 1.0″ H
add’l: 0.7″ W × 1.0″ H

1.4″ W × 0.7″ H button: 0.6″ W × 0.9″ H;
groove: 0.5″ W × 3.1″ H

on/off: 1.2″ W × 2.0″ H;
dim: 0.6″ W × 0.3″ H

0.5″ W × 0.6″ H, but
depends on smartphone

1.7″ W × 0.4″ H

rough base cost of system $75 $450 $11$85 $22 $1,300 + install contract

rough cost per additional panel or switch $25 per $20 per $250 – $450 per —$22 per $1,300 per

rough cost per additional full-color lightbulb $5 – $10 per $5 – $10 per$30 – $60 per $10 – $15 per $11 per varies by installed apps

guest use (without logins or instructions) no✗ yes✓ yes✓ yes✓ yes, shortcut buttons✓ only from switch✓

motion detection in controller itself only short range✗ no✗ no✗ no✗ no✗ yes, 8 – 15 feet✓

tactile controls only for menus✗ no✗ yes, plastic switch✓ yes, 2 grooves✓ yes, plastic switch✓ yes✓

has ability to set a bulb’s color yes✓ yes, in app✓ yes, in app✓ yes, in app✓ yes, in app✓ yes, in app✓

taps to gradually dim or brighten lights 1 “move” (finger slides
along grooved slider)

1 tap or 1 tap-and-hold,
depending on button

2 to 3 taps, plus taps to
get to the phone app

1 press-and-hold1 press-and-hold depends on device and
shortcut settings

appearance in a fully off-and-dark room buttons turn light gray,
screen fully dims

no change? in app, buttons display
an off switch

display shuts offnightlight shines nightlight shines

tap reaction time 10 – 50 ms 20 – 1500 ms 5 – 20 ms5 – 20 ms depends on device5 – 20 ms

temporarily installable (no hardwiring needed) hardwired✗ hardwired✗ switch is hardwired✗ yes✓ yes✓ yes✓

normal operation during internet outage no✗ no✗ yes✓ yes✓ yes✓ yes✓

Brilliant, 2-slider panel (2018)hub and one panel TP-Link KS225 (2024)Philips Hue bridge and dimmer AVA Home Remote (2022)Philips WiZ bulb, 60 W

This matrix is an excerpt of my research into other systems. It’s a mix of publicly posted specs
and measurements based off of them. I’ve added Smarthome’s current capabilities as a reference.

Bulb and app only
Criteria

Smarthome Wall display panel Smart plastic wall switch

Competitive analysis

Remote controlBig-brand hub
Remarks

Ability to choose a color for one single bulb.

Brilliant sells one kit of a non-hardwired type.

Alas, no Smarthomesense for now.

These systems purposefully come from
different categories and cost levels.

Includes the number of taps it takes, through
menus or other screens, plus the action itself.

Except for the remote, costs exclude installation.

Bulbs that are directly integratable with the hub.

Excludes reset, pairing, or setup buttons.
 Add’l” refers to buttons found in additional tools.“

Light buttons only, no pairing or reset buttons.

An opportunity for Smarthome here:
work well at night.

Same as previous row.

↺ Back to Contents

56 Smarthome Tech Book 57Product

form factor of controls touch screen on wall touch screen on wall
with 2 grooves

smartphone apppaddle switch on wall remote control with
Android touch screen

smartphone app, wall
remote-switch hybrid

name and style of hub or protocol open, Home Assistant not a hub, integratable proprietary, WiZproprietary, Hue (Zigbee) open, Matter not a hub, integratable

LCD pixel size (width × height @ pixel density) 640 × 960 @ 326 ppi 720 × 1280 @ 259 ppi —— — 480 × 1170 @ 280 ppi

LCD physical size (width × height / diagonal) 2.0″ × 2.9″ / 3.5″↖↘ 2.8″ × 4.9″ / 5.6″↖↘ —— — 1.7″ × 4.2″ / 4.5″↖↘

number of actions from main view 6 (or 12 with gestures) 4 (or 6 with gestures?) 8 1 depends on smartphone around 8 to 12

size of smallest button main: 1.0″ W × 1.0″ H
add’l: 0.7″ W × 1.0″ H

1.4″ W × 0.7″ H button: 0.6″ W × 0.9″ H;
groove: 0.5″ W × 3.1″ H

on/off: 1.2″ W × 2.0″ H;
dim: 0.6″ W × 0.3″ H

0.5″ W × 0.6″ H, but
depends on smartphone

1.7″ W × 0.4″ H

rough base cost of system $75 $450 $11$85 $22 $1,300 + install contract

rough cost per additional panel or switch $25 per $20 per $250 – $450 per —$22 per $1,300 per

rough cost per additional full-color lightbulb $5 – $10 per $5 – $10 per$30 – $60 per $10 – $15 per $11 per varies by installed apps

guest use (without logins or instructions) no✗ yes✓ yes✓ yes✓ yes, shortcut buttons✓ only from switch✓

motion detection in controller itself only short range✗ no✗ no✗ no✗ no✗ yes, 8 – 15 feet✓

tactile controls only for menus✗ no✗ yes, plastic switch✓ yes, 2 grooves✓ yes, plastic switch✓ yes✓

has ability to set a bulb’s color yes✓ yes, in app✓ yes, in app✓ yes, in app✓ yes, in app✓ yes, in app✓

taps to gradually dim or brighten lights 1 “move” (finger slides
along grooved slider)

1 tap or 1 tap-and-hold,
depending on button

2 to 3 taps, plus taps to
get to the phone app

1 press-and-hold1 press-and-hold depends on device and
shortcut settings

appearance in a fully off-and-dark room buttons turn light gray,
screen fully dims

no change? in app, buttons display
an off switch

display shuts offnightlight shines nightlight shines

tap reaction time 10 – 50 ms 20 – 1500 ms 5 – 20 ms5 – 20 ms depends on device5 – 20 ms

temporarily installable (no hardwiring needed) hardwired✗ hardwired✗ switch is hardwired✗ yes✓ yes✓ yes✓

normal operation during internet outage no✗ no✗ yes✓ yes✓ yes✓ yes✓

Brilliant, 2-slider panel (2018)hub and one panel TP-Link KS225 (2024)Philips Hue bridge and dimmer AVA Home Remote (2022)Philips WiZ bulb, 60 W

This matrix is an excerpt of my research into other systems. It’s a mix of publicly posted specs
and measurements based off of them. I’ve added Smarthome’s current capabilities as a reference.

Bulb and app only
Criteria

Smarthome Wall display panel Smart plastic wall switch

Competitive analysis

Remote controlBig-brand hub
Remarks

Ability to choose a color for one single bulb.

Brilliant sells one kit of a non-hardwired type.

Alas, no Smarthomesense for now.

These systems purposefully come from
different categories and cost levels.

Includes the number of taps it takes, through
menus or other screens, plus the action itself.

Except for the remote, costs exclude installation.

Bulbs that are directly integratable with the hub.

Excludes reset, pairing, or setup buttons.
 Add’l” refers to buttons found in additional tools.“

Light buttons only, no pairing or reset buttons.

An opportunity for Smarthome here:
work well at night.

Same as previous row.

↺ Back to Contents

59 58 Smarthome Tech Book

Smarthome comes from
a long history of web app experiments.

I made my first light-control experiment in 2014.
I had never made wall controls up to that point,
just wall weather displays you looked at.
Those first few buttons were tiiiiny.

Still, the app was a snappy one.
When you tapped a button, it’d send a radio signal out
and you’d hear a whole bunch of lights click on.
When it worked, it was a treat. (When.)

It always seemed to act up before bed,
and it always, always was those kitchen ones
with the switch up above the cupboards.
I spent more than a few nights waving around
tinfoil and the Raspberry Pi, trying in vain
to get the signal to reach that plug.

All that, and my helpless geeky self would
still be thinking, “it’s kinda neat they’re stuck on.”

Thank you to past me for those experiments,
and to my friends and family for putting up with them.
You make up the most important part of Smarthome.

For Anthony

↺ Back to Contents

59 58 Smarthome Tech Book

Smarthome comes from
a long history of web app experiments.

I made my first light-control experiment in 2014.
I had never made wall controls up to that point,
just wall weather displays you looked at.
Those first few buttons were tiiiiny.

Still, the app was a snappy one.
When you tapped a button, it’d send a radio signal out
and you’d hear a whole bunch of lights click on.
When it worked, it was a treat. (When.)

It always seemed to act up before bed,
and it always, always was those kitchen ones
with the switch up above the cupboards.
I spent more than a few nights waving around
tinfoil and the Raspberry Pi, trying in vain
to get the signal to reach that plug.

All that, and my helpless geeky self would
still be thinking, “it’s kinda neat they’re stuck on.”

Thank you to past me for those experiments,
and to my friends and family for putting up with them.
You make up the most important part of Smarthome.

For Anthony

johnmatu.la

